
*w~ *li^^qmmfmm*v*mrwm*!l^m*l*iv™ '•>-"" "tmumi ■nm.imM.t.Hwmi umin ■.i^iii^HpMMpRMicm^wiiiWBiw "

1

c

CO
o

ESD-TR-76-I6I

MINIMIZING THE NAMING FACILI1 .CJ

REQUIRING PROTECTION IN A COMPUTING UTILITY

Computer Systems Research Division of Project MAC
Massachusetts Institute of Technology
Cambridge, MA

September 1975

approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT-SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD
ARLINGTON, VA 22209
ARPA Order No. 2641

D D C

OCT 28 1976

I5EC D ü;
D

i

A

wr~ mmm 11111" " — '"""■"

Ä^

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessrrily representing the official |>olicies,
either expressed or implied, of the Defense Advanced Research Projects Agency

or the U.S. Government.

^

LEGAL NOTICE

When U. S. Government drawings, specifications or other data ore used for any
purpose other than a definitely related government procurement operation, the
government thereby Incurs no responsibility nor any obligation whatsoever, and
the fact hat the government may have formulated, furnished, or in any way sup-
plied th • said drawings, specifications, or other data is not to be regarded by
Inplicatlon or otherwise as in any manner licensing the holder or any other person
or cpnveylng any rights or permission to manufacture, use, or sell any patented

«fl^ttion that may in any way be related thereto.

.
OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved Cor publication.M

1

;

'R R. SCMELL, Major, I'SAF
:hniques Engineering Division

it/./A?^ /i. /.,.>.

FOR THE COMMANDER

^ ^ - - v ^ V^y /W
STANLEY P./DERESKA, Colonel, USAF
Chief, Techniques Engineering Division
Information Syste.ns Technology
Applications Office

MMMMMMi
'2 ■ PU

WIL! IAM R. PRICE, Captain, I'SAF
Techniques Engineering Division

• 4 //

mmm ~~~—"•~- mmnmmmmm mmmm*^*imm*vm*'» '■ " '■' "

SECURITY CL »SVFICATION Of THI« D*0t (9hm ttm* Unltted)

/^TpRichord Glem

REPORT DOCUMENTATION PAGE

-UXLX Cnrl lnhflUat

MINIMIZING THE^AMING FACILITIES T—
SQUIRING PROTECTION IN A COMPUTING i
UTILITY»

=P

nAJratt /

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Systems Research Division of Project MAC
Massachusetts Institute of Technology
Cambridge. MA

RF/>D INSTRUCTIONS
BE^GKi; COMPLETING FORM

Trmrmr h. OOVT ACCESiJCinrO. J-*»«<"l'"FKT", CATALOG NUMHrR

(9J \jrfir,rft(fußt.

6 PERfOf<MING ORG. REPORT NUMBER

S. TONI RACT OR GRANT NUMBERf«)

FI9628-74-C-0I93
ARPA Order No. 2641

II. CONTROLLING OFFICE "= AND ADDRESS

Deputy for Common c id Management Systems
Hq Electronic Sysi ms Division
Hanscom AFB, MA 0173!

10 PPCGPAM CLEMENT. PROJECT. TASK
APT« » WORK UNIT NUMBERS

CDRI Item A009

14 MONITORING AGENCY NAME « AODRESSCI'J/«»r»n(Irom Controlling Oltlc»)

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 2^209

f//' SepNBbf #75 /^

129
15 SECURITY CLASS. foMS

16 DISTRIBUTION STATEMENT (ol Ihlt Rtport)

Approved for Public Release; BhJdhytJM ''nlllTiitH

17 OISTF^BUTION STATEMENT (ot Ihm mbmlrmcl mtrred In.Block 20, It dlllmrmnl Irom Report)

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Contlnv on revf tldm II nmcmnmry mid Idmnllly by block number)

computing utility, Multics, security kernel, protection,
naming fsc-Mities

UNCLASSIFltD //5(5p
im. OECL ASSIFICATION DW»WUR«t)M««/

SCHEDULE 11

20V,ABSTRACT (Conllnum on rmvmrmm mldm II nmcmmtm-y and Idmnlllv by block numbmr)
/\
This thesis examines the various mechanisms for naming the
information objects stored in a general-purpose computing
utility, and isolates a basic set of naming facilities that
must be protected to assure complete control over user
interaction and that allow desired interactions among users
to occur in a natural way. Minimizing the protected namim
facilities consistent with the functional objective of—^ (cont.)

00,^;", 1473 EDITION OF 1 NOVfl IS OBSOLETE

'/ O 1 (* /o SECURITY Cl ATION OF THIS PAGE rWtimi Data tn(»r«./i

AM

r mm~wmmmmm

SECURITY CLASSIFICATION OF THIS PACECHTian D«»« Enl»f»dJ

ä
20 Cont.

controlled, but natural, user interaction contributes to defining
a security kernel for a general-purpose computing utility. The
security kernel is that complex of programs that must be correct
if control on user interaction is to be assured.

The Multics system is used as a test case, and its segment naming
mechanisms are redesigned to reduce the part that must be pro-
tected as part of the supervisor. To show that this smaller
protected naming facility can still support the complete
functionality of Multics, a test implementation of the design
is performed. The new design is shown to have a significant
impact on the size and complexity of the Multics supervisor.

tECUHITY CLASSIFICATION OP THIS PAOEftTh.n Dmim Enlmitd'

■^■■^wpimi --■*- -— mm '*****mmmii*^'*

^

MINIMIZING THE NAMING FACILITIES REQUIRING PROTECTION

IN A COMPUTING UTILITY

Richard Glenn Bratt

September 1975

D D C
EaLaz

OCT 28 1876

EISEUITE
D

! ■

The research reported here was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force
Information Systems Technology Applications Office (ISTAO), and
by the Advanced Research Projects Agency (ARPA) cf the Department
of Defense under ARPA order No. 2641 which was monitored by ISTAO
under contract No. F19628-7U-C-0193.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

MASSACHUSETTS 02139

iti

DISTRIBUTION STATEMrMT /

Approvod fcr public xcV
Distxibulon UnhraitcJ

 ^^^^i^ I ■in min !■■" • ""I ' i WIIIIIII ■LVMIinniillllii»^!--«

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis

supervisor, Michael D. Schroeder, for his helpful suggestions

and guidance throughout the conception and execution of this

thesis.

Thanks are also due many other members of the Computer

Systems Research group at M.I.T.'s Project MAC for their helpful

comments and suggestions. In particular, I would like to extend

my thanks to Doug Wells and David Reed for their help in

isolating two programming bugs in the initial irrplementation of

the design presented in this thesis.

I would also like to take this opportunity to thank my

girlfriend, Claire, for her kind help and gentle understanding

during the past months.

This research was performed in the Computer Systems

Research Division of Project MAC, an M.I.T. Interdepartmental

Laboratory. It was sponsored in part by Honeywell Information

Systems Inc., and in part by the Air Force Information Systems

Technology Applications Office (ISTAO), ard by the Advanced

Research Projects Agency (ARPA) of the Department of Defense

under ARPA order No. 2641 which was monitored by ISTAO under

contract No. F19628-7M-C-0193.

-2-

'-—-- -'-■■■ — - -

—"'"■"■ ' ■^,l11 ■PMCWff

MINIMIZING THE NAMING FACILITIES REQUIRING PROTECTION
IN A COMPUTING UTILITY»

by

Richard Glenn Bratt

ABSTRACT

the
util
be p
that
way.
the
inte
gene
corap
inte

Th
inforraa

ity, and
rotected
allow d

Minim
functio

raction
ral-purp
IPX of
raction

is the
tion
isola
to as

esired
izing
nal o
contr

ose c J
progr

is to

sis e
obje

tes a
sure
inte

the p
b.ijct
iDute
mputi
ams
be as

xami
cts
bas

comp
ract
rote
ive
s t
ng u
that
sure

nes
sto

ic s
lete
ions
cted
of

o d
tili

mu
d.

the
red
et o
con
arao
nam
con

ef in
ty.
st

variou
in a g
f nami
trol o
ng use
ing fa
trolle
ing a
The s

be cor

s mech
eneral
ng fac
ver us
rs to
ciliti
d, bu

secu
ecurit
rect i

anisms
-purpo
ilitie
er int
occur
es con
t nat
rity
y kern
f cent

for
se c
s th
erac
in a
sist
ural
kern
el
rol

naming
onputing
at must
tion anJ
natural

ent with
, user
el for a
is tnat
on user

The Multics system is used as a test case, and its
segment naming mechanisms are redesigned to reduce the part that
must be protected as part of the supervisor. To show that this
smaller protected naming facility can still support the complete
functionality of Multics, a test implementation of the design is
performed. The new design is shown to have a significant impact
on the size and complexity of the Multics supervisor.

»This report is based upon a thesis of the same title submitted
to the Department oi Electrical Engineering, Massachusetts
Institute of Technology, on July 7, i975 in partial fulfillment
of the requirements for the degree of Master of Science.

-3-

" --— UMt^tfMHftglftaBMalM

wmm iPMVPPnpw

TABLE OF CONTENTS

Section

ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
LIST OF FIGURES

Chapter I:
1 . 1
1.2
1.3
I.H

Chapter II
2.1
2.2
2.3
2.4
2.5
2.6
2.7

Introduction
Brief Statement of the Problem and Result
Related Work
Background
Plan of Thesis

Name Space Management in a
Basic Information Storage and
Global Machine-Oriented Names
Global User-Oriented Names
Local Machine-Oriented Names
Local Descriptors
Local User-Oriented Names
Summary

Computing Utility
Protection Model

Chapter III: A Model of the Multics System
3.1 Storage System Model
3.2 Information Protection Model
3.3 Address Space Model
3.4 Reference Name Space Model

Chapter IV
U.I
U.2
4.3

n.n

4.5

Chapter V:
5.1
5.2
5-3

: Redesign of the Security Kernel
Dependence on the Reference Name Manager
Source of the Dependence
Removal of the Dependence

4.3.1 Overview of the Design
4.3.2 Details of the Design
Removal of Pathname Processing

4.4.1 Parameters to Ring Zero
4.4.2 Links
4.4.3 Internally Generated Pathnames
4.4.4 Error Conditions
Summary of the Design

Redesign of Non-kernel Functions
Reference Name Manager Design
Pathname Resolution
Interface Compatibility

Chapter VI: Implementation
6.1 Plan
6.2 Impact on System Complexity
6.3 Impact on System Performance

Page

2
3
4
6

7
7
8
8

12

16
16
18
19
23
28
30
32

ID
34
40
43
45

47
48
50
53
53
57
67
69
69
72
73
75

76
76
79
82

84
84
86
88

-4-

-—

—-—

Chapter VII: Conclusion 91

Appt
Appen
Appen
Appen
Appen
Appen
Appen
Appen
Appen

-lix A
dlx B
dix C
dlx
dlx
dlx
.IX

dlx H
dlx I
1.1
1.2
1.3

Mult cs Known Segment Table
Proposed Known Segment Table
Proposed Address Space Manager In
Example
Size of Programs
Performance Data
Ring Zero Interface Complexity Da
The Address Space Manager Program
Unlmplemented Address Space Manag

Reserved Switch
Copy Switch
Transparency Switches

94
96

terface 97
98
100
102

ta 104
s 107
er Functions 125

125
126

BIBLIOGRAPHY 128

-5-

^ - iiÜinfMIrtMMi II

' ,I,,J"" •*,™*«****~**^**w*^mmmmiimßmimm'***** wmrm^w^m^rwm*

List of Figures

Figure Page

2-1: Global Machine-Oriented Names

2-2: Global User-Oriented Names

2-3: Local Machine-Oriented Names

2-4: Local Descriptors

2-5: Local User-Oriented Names

U-1: Action of Initiate for Directories

19

23

27

29

32

63

-6-

r^ mmmmmimmw^— — ,IPI"11 ' ' ■ ' ■ ■■■ i""i •> iUPllI -w^m^p*"-!-

Introduction

1.1 Brief Statement of the Problem and Result

This thesis investigates the class of computing utility

mechanisms that deal with naming information objects within a

computing utility. Our goal is to understand the various

functions pl'.yed by name spaces in contemporary computing

utilities and to decide which of these functions must be

protected to assure complete control over user interaction. The

Multics system, which is a sophisticated computing utility, will

be used to test the validity of our conclusions. (1) We will

find that Multics protects several mechanisms that we claim need

not be protected to assure control over user interaction. To

substantiate our claim we will present a redesign of Multics that

allows these mechanisms to be unprotected without sacrificing the

ability to control user interaction. The resulting reduction in

the amount of code that must be protected to assure control over

user interaction contributes to defining a security kernel for

Multics.

(1) The Multics system was developed as a prototype computing
utility by Honeywell Information Systems, Inc., and M.I.T.'s
Project MAC. A complete bibliography of the Multics system may
be found in [M2].

-7-

) UMII wmr— -mm tmmwm*- •

1.2 Related Work

.

The Multics system [C1, C2, M2, 01, S3] is an example

of a sophisticated state-of-the-art computing utility. As part

of a general investigation into how one goes about the task of

certifying the security of large systems, the Computer Systems

Research Division of Project MAC at M.I.T. is attempting to

oroduce a certifiably secure version of the Multics system, by

redesigning Multics to minimize the collection of programs that

must be correct to assure complete control over user

interactions. As a result, this collection of programs, the

Multics security kernel, has been steadily decreasing in size and

complexity. A recent masters thesis [J1] describes how a Multics

security kernel that does not include a dynamic linking roechanii^ui

was developed. This thesis reports the results of another effort

to reduce the size of the Multics security kernel.

1.3 Background

A computing utility is any computer system, or network

of interconnected computing systems, that provide general

computing services to a community of users. Among the most

important services provided by computing utilities are facilities

that allow users to share, store, retrieve, and process

information. To facilitate the manipulation ard sharing of

stored information, computing utilities must support a multitude

-8-

- ^.—^.^■^—^

•mm^n^tm^mmm ,11 ll. l .iai||i^^mp>wa

of name spaces. These name spaces, which maintain a

correspondence between a collection of names 3nd the information

they denote, provide organization of the collections of

information processed in the system.

I

We find many name spaces at all levels of a computing

utility. The base computers on which a computing utility runs

implicitly employ a name space that maps a set of integer names

(actually a set of representations of Integers) called addresses

into a set of words of computer memory. Similarly, direct access

mass storage devices such as magnetic disks and drums define a

name space that maps physical storage addresses into records of

bits. At a higher level, most computer utilities support a name

space that allows its users to denote files of information by

character string names such as "John's.file". Detailed analysis

of most systems reveals many other examples of name spaces.

We have stated that a computing utility provides

information processing services to a community of users. Since

we have not placed any restrictions upon the composition of this

user community, we must assume that these users harbor ill will

toward e,ch other or toward the computing utility itself. This

ill will can manifest itself in any of three ways. A malicious

user might attempt to use, modify, or prevent others from using

or modifying information in the computing utility. Even in a

computing utility shared by a non-m?vicious user community, one

-9-

111,1 "' ' "• WPW^^PH^P»^—«^ "l«1"111 '

user might accidently compromise another user's information or

computation.

Any general computing utility must prevent suCii

undesirable interactions between its users. To this end it must

secure ito users against unauthorized use, modification, or

denial of use of the information they process i"-, the computing

utility. This requires that the computing utility implement an

authorization mechanism that allows those user-information

interactions that are to be permitted to be specified. The

information supplied to the system through this authorization

mechanism must then be used by an access control mechanism that

intercepts all user-information interactions and verifies that

they are authorized.

The presence of access authorization and control

mechanisns in a computing utility does not prima facie secure its

users frcm harmful, uncontrolled interactions with other users of

the computing utility. It must be established that these

protection mechanisms do indeed perform their intended task

without error. It further must be established that these

information protection mechanisms cannot be subverted, damagea,

or circumvented. Only then may users of the computing utility

process sensitive, irreplaceable, or timely information with

reasonable freedom from fear for its security.

-10-

. 1 L.

M,.,MI ,.„ ,1 mwmm^i^mmmiimm'mißmmmr. «"" "'•-"" ' 'i ' ■ ii n»iu «>i!«a»i»pwiiii»i i« in l> I. V I Upi IIBI

We identify that suoset of the mechanisms of a

computing utility which must be correct in order to guarantee

the security of the information contained in the computing

utility as its security kernel.

Clearly the task of establishing the correctness of the

security kernel of a computing utility must increase

monotonically with its size and complexity. For this reason it

wouli be advantageous to know which computing utility mechanisms

need be included in the security kernel for intrinsic reasons. A

mechanism has an intrinsic need to be included in the security

kernel of a computing system if and only if it OCB be used by one

computation to influence another computation. The access

authorization and control mechanisms of a computing utility are

the two most obvious examples of mechanisms that must be included

in a security kernel. If a computing utility supports a shared

name space for identifying stored information, then this

nuch ilsm, by virtue of its commonality, also allows one

computation to influence another and hence must be considered

part of the security kernel of the computing utility.

Mechanisms that have no intr'.:sic need to be protected

often are included in the security kernel of a system. Common

reasons for incorporating a mechanism in the security kernel of a

computit.g utility when it has no intrinsic need to be protected

include the desire to protect the mechanism from damage, the

-11-

 ~ ^^n wmmmmmmmmm ——1 mmm

desire to minimize cross domain calls, and the need to protect

the mechanism because some security kernel mechanism happens to

depend upon its correct operation. The motivation behind

ir.üluding a mechanism in the security kernel of a computing

utility when it has no security-related need to be protected must

be carefully analyzed, as the inclusion of the mechanism in the

security kernel contributes to the complexity of the security

kernel. Removing the mechanism from the security kernel would

have the advantage of lessening the task of establishing the

correctness of the security kernel. This thesis will evaluate

♦•he need for each of the major* name spaces supported by a typical

computing utility to be included in its security kernel. We will

use the knowledge thus accumulated to simplify the Multics

security kernel.

1.H Plan of thesis

In Chapter II we present a model of a computing

utility. This model pays particular attention to those

mechanisms that are involved in naming information stored in a

computing utility. We begin by defining a very simple

information storage and protection model. Through successive

enhancement of this model we arrive at a model that we feel

represents the essence of name space management in a contemporary

computinR utility. As we add each nev name space to our model,

we consider its basic raison d'etre, the advantages and

-12-

k Jlm " '■■ ' '"'M' mf^KKmmm^m^m

disadvantages it provides over the previous model, and most

importantly its impact upon which name spaces in the model must

be protected as a part of the security kernel.

Chapter III l j^ins our case study of name space

management in Multics. We identify the major name spaces

maintained by Multics that deal with naming scored information

and establish a correspondence between these name spaces and the

name spaces of our model. Having established this

correspondence, we attempt to verify that only the naming

functions identified in our model as security sensitive are

implemented by the Multics security kernel. This investigation

reveals that the Multics reference name space, a name space used

in resolving inter-procedure references, is implemented in the

Multics security kernel although it has no intrinsic need to be

protected. (1) The reasons behind this flaw in the modularity of

the Multics system are investigated.

In Chapter IV we develop a design that removes

reference name management from the security kernel of the Multics

system. In so doing, we also remove several functions related

to the management of the Multics global naming hierarchy from the

Multics security kernel. The most notable of these are that

function which allows the security kernel to name segments by

(1) The research reported in this thesis is based upon the M.I.T,
Multics system of December 1974, Multics system 24.2.

-13-

Li

ii .i uiiimHMfi 1 '" ""i"i- ■"■""-■"— '■'", 'p^^. 1 ■"«Jiiiii ■«■■ iviiVpnmippnvMa

hierarchy pathnames and that function which allows multiple

paths in the Multics storage system hierarchy to designate the

same object. In the course of removing these functions from the

security kernel, our design drastically changes the Multics

security kernel interface. Finally, we discuss the impact of

this design upon the security kernel.

Chapter V discusses the implications of our security

kernel design upon code running outside of the Multics security

kernal. We discuss the principles involved in designing a

"-eference name manager which runs outside of the Multics security

Kernel. In the course of tJr'.s presentation we uncover an

important consideration in moving any module out of the Multics

security kernel. Specifically, Multics security kernel

procedures are guaranteed to run to completion once invoked.

This allows them to make assumptions that would be invalid were

they to be executed in the interuptable environment outside of

the security k^nel. Following this discussion, we show how the

functions cf pathname resolution, and storage system link

processing may be implemented outside of the Multics security

kernel. Finally, we discuss the need for simulating the old

security kernel interface.

In Chapter VI we discuss the results of a test

implementation of ihe security kernel we have designed. This

test implementation allowed us to measure of the impact of uur

-IH-

_,, mmm'*™*^

design upon the complexity and performance of the Multics system.

We report this "ata along with a description of our test

implementation.

We have included nine appendices in this tnesis.

Appendix A details the structure of the data base for the Multics

24.2 address space manager and reference name manager. Appendix

B shows the impact of our design upon the structure and content

of this data base. Appendix C summarizes the new address space

manager interface proposed in this thesis. In appendix D we

present an example of the use of this new interface. Appendix E

summarizes tne impact of this thesis upon the size of the Multics

security kernel. In appendix F we report the details and results

of our performance comparison between Multics system 24.2 and our

test system. Appendix G summarizes the effect of our thesis upon

the complexity of the Multics security kernel interface.

Appendix H presents the programs of our redesigned address space

manager for the reader's perusal. Appendix I discusses several

functions supported by the Multics system 24.2 address space

manager that, for the sake of simplicity, were not considered in

the body of the thesis.

-15-

————"■—'——" "'■l IM .1 1 I 111 M

Chapter II

Name Space Management in a Computing Utility

In this chapter we will develop a model of a jomputing

utility. Our emphasis will be upon the roles Played by name

spaces in contemporary computing utilities. This model will be

developed by adding successive layers to a central model of

information storage and protection. After we add each successive

mechanism or name space to this model, we will present a graphic

representation of the current state of the model. Each node in

these illustrations will represent a class of names. The na.ne

space binding one group of names to another group of objects or

names will be represented by an undirected line. If a name space

must be protected to control user interaction, then the line

representing it will be constructed from the symbol ,,-M. If the

name space need not be protected it will be represented by a line

composed of the symbol ".".

2.1 Basic Infer-.ation Storage and Protection Model

Some basic notion of information storage and protection

must be at the heart of any computing utility model. In our

model the basic vessel of information storage is a segment. In

theory, we do not restrict the amount of information a segment

-16-

 " ——

mmm ■^II.MI«» " " """■! ^RMmmppmWK 1 •■'■'■■ll

may contain. In practice, the amount of information a segment

may hold will be bounded by a combination of hardware and

software limitations.

Segments will also serve as our basic unit of

information proteccion. We require that any information

protection must apply uniformly to all information stored wi^in

a segment. We will choose an access control list (ACL) basci

information protection scheme for our model. The basic

motivation behind this choice is that Multics, our test case

system, uses an access control list protection scheme.

We assume that an access control list is associated

with every segment. This access control list encodes the

authority of each principal in the computing utility to use or

modify the contents of the associated segment. (1) We will

further assume that the computing utility supports the necessary

principal authentication and access autnorization mechanisms for

maintaining the contents of access control lists. We require

that at some point in referencing any segment, its associated

access control list be used to med ,e that reference.

(1) We assume that the reader is familiar with such computer
science concepts as access, capabilities, domains, processes, and
principals [SU, F1].

-17-

"j"'"•■'■^•■'•^^»^^^■■NI ' m ^p^nmnw"»««^"^""^»»^« '"•"•■, '•, 1 ■■ "

2.2 Global Machine Oriented Names

We will name a segment and its access control list by a

name that is unique within the system. This name, which we will

call a unique identifier (UID), will ue compact, fixed length,

and of high information density. The unique identifier naming a

segment and its access control list will be assigned when the

3egment is created and may never be changed. Once assigned, a

unique identifier will be valid for all time. If we allowed a

unique identifier to be reused after the segment it names is

destroyed, then that identifier would not uniquely identify a

segment. It would be difficult, if not impossible, for a process

to distinguish between different segments, existing at mutually

exclusive points in time, named by th> same unique identifier.

(1)

It should be noted that we have purposely excluded the

possibility of having mere than one unique identifier bound to

the same ooject. The reason for this is the need to determine if

two segments are identical. If we guarantee that no two unique

ic.entifiers are bound to the same object, then we can decide if

two segments are identical by comparing their unique identifiers.

Lacking this guarantee, it is not clear how a process could

decide if two segments were the seme segment. (2)

(1) A discussion of the need for computing systems to support
unique identifier name spaces may be found in Fabry [Fl].

(2) By equal we mean the lisp concept of eq [M^].

-18-

RlUH^Winui m*mr ■ ,, ,„ , ,,, nj,, 11 IIIMViUll BMPpnPWI

Due to their compact size, unique identifiers are well

suited to efficient implementation and manipulation by computing

hardware. We will assume, for the moment, that access control

will operate during the translation of unique identifier to

object. Cercainly this requires that the name spaces that

associate unique identifiers with objects and their associated

access control lists be protected. Otherwise a process could

circumvent the access control mechanisms of the system by causing

the unique identix'ier associated with any segment to name an

arbitrary access control list or equivalently, causing the unique

identifier associated with any access control list to name an

arbitrary segment It is therefore necessary thac the security

kernel exercise complete control over the unique identifier to

access control list and unique identifier to segment name spaces.

Since the security kernel must force these two name spaces to

correspond, we will treat them as a single entity. Figure 2-1

illustrates this protected binding mapping unique identifiers

into segments and their access control lists.

<UID> +++ <SEG/ACL>

Figure 2-1: Global Machine-Oriented Names

2.3 Global User Oriented Names

From the point of view of a human user, the unique

identifier name space which we have defined for naming segments

-19-

I^W .___^,

r. i ■■■ uii^ vipiiMBi aiiaiii. i wmmimmmfrnmiBm mmmmmi^ mnßm mi> ^-^.^.^ww-,^.

has four major inherent disadvantages. The first disadvantage is

that humans are poor at dealing with high information Jensity

names. Second, since unique identifiers must be assigned by the

system and not the user, they can have no mnemonic significance.

Third, the binding or meaning of a unique identifier cannot be

changed. The final disadvantage in the usage of unique

identifiers by humans is that it ^s often convenient to allow

multiple names in a name space to denote the same object. In our

modej we have precluded the possibility of having two unique

identifiers name the same segment.

For these reasons, any via e computing utility must

support a user-orientert name space. Ideally this name space

should bind arbitrary length, user-supplied character string

names to unique identifiers. In practice, some upper bound is

often placed upon the size of user-supplied names. In any-

reasonable computing utility this restriction must not force

users to use difficult-to-remember non-mnemonic names. To

promote and encourage information sharing, this name space

should be sharable by all processes in the computing utility. If

this were not the case, then one user who wished to share a

segment with another user would have to communicate the unique

identifier of that segment to the other user. A shared

user-oriented name space eases this communication problem by

allowing users to identify segments in interpersonal

communication by human-oriented names.

-20-

""•"^'W"-'" JW'P»' " ■

A well known weakness of such a -.impie, unstructured,

global name space, which results from the need for a name 3pace

to define a function, is that two users may not name different

segments by the same name. If One user names a segment

,,square_root_program", then no other user may use this name for

another segment. Perhaps the most severe manifestation of this

problem is that a user may not choose a name for a segment

without knowledge of every name in the global name space.

Another consequence of the global scope of the name

opace we are defining is that it provides a path of user

interaction. One user might intentionally modify a name to

unique identifier binding that another user was depencing upon.

This constitutes an uncontrolled malicious user interaction since

it allows one process to cause another process to reference the

wrong segment. This in turn may cause an unsuspecting process to

fail or compromise the integrity or security of sensitive

information to which it has access. It is therefore apparent

that the ability to change a global user-oriented name space must

be regulated by the security kernel.

One simple authorization scheme a computing utility

could adopt for its global user-oriented name space is to allow

only the principal who created a name binding to modify that

binding. Unfortunately, even such a primitive authorization

mechanism is an unwieldy extension to the unstructured name space

we have defined. Such an extension would require that every name

-21-

.
.. -— Üh

mBPm^ri.im"*ii i Mil"

binding in the nc'.me space have an associated principal name used

to authorize modifications of that name binding. If the name

space were structured into meaningful collections of name

bindings, then a more natural authorization scheme based on

controlling a process' ability to modify any of a related

collection of name bindings cuuld be employed.

Hierarchical name spaces, such as the user-oriented

name spaces found in the Multics [B1, 01] and UNIX [R2]

time-sharing systems, provide a powerful and natural solution to

both the naming conflict and authorization jroblems outlined

above. Since most name spaces found in contemporary computer

systems, such as the ubiquitous "two-level" file system [M3], may

be described as degenerate fixed-depth hierarchies, our model

will support a hierarchical global user-oriented name space.

Hierarchical name spaces provide their users with a

powerful organizational mechanism. This mechanism encourages

logically related name bindings to be collected in a single

directory or directory sub-tree of the hierarchical name space.

For instance, each user could place name bindings he creates in

distinct sub-trees of the hierarchy. Naming conflicts within a

given directory are easily avoided by locally restructuring the

hierarchical name space bo that the conflicting name bindings

occur in different directories. The directory structure of a

hierarchical name space can also serve as the basis for a simple,

-22.

Mwiiuin im m, ""i""'"1"»-'. i imwmmi^m^mmmmww^^mm mimn*mm.«

flexible mechanism for controlling the modification of the name

bindings in the hierarchical name space. The ability to use

and/or change the na.ue bindings in a directory can be specified

by an access control list on that directory. Authorization

control may also be uelegated by allowing the access control

lists of a directory to specify which principal may modify the

access control lists of its sub-directories. Figur? 2-2 extends

our model to include both human-oriented and machine-oriented

global name spaces.

USER ORIENTED
NAMES

MACHINE ORIENTED
NAMES

<PATHNAME> +++++++++++++ <UID> ++++ <SEG/ACL>

Figure 2-2: Global User-Oriented Names

2.1 Local Macnine Oriented Names

At this point our model provides two very powerful

mechanisms for naming information. One mechanism allows any

segment in a computing utility to be denoted by a compact,

fixed-length, unique identifier. The other .-taming mechanism

allows segments to be named by arbitrary length charactei string

names indicating the position of a segment in a naming hierarchy.

In common to both of these mechanisms is the fact that their

scope is global; they are shared by all users of the computing

utility.

-23-

■ ...a .. . J-„J^.. -^■^■».i*

™^»»^»™T" v**> m*~*~ «mmm RJ

An obvious implication of the scope of a unique

identifier is that it must be capable of representing as many

distinct segments as the computing utility could create

throughout its entire life. Because the set of segments existing

at any one time will be a small subset of all segments that have

ever existed or will ever exist, our unique identifier name space

will be sparsely populated. For large systems with long

lifetimes, this unique identifier name space will also be quite

large. Economics demand that such large, sparse mappings be

stored in a compact form requiring more sophisticated accessing

methods than indexing by unique identifier value. This need for

sophisticated retrieval methods in conjunction with the large

potential size of the unique identifier to figment mapping tables

suggests that this name space is difficult to implement

efficiently. As a result, contemporary computing hardware

provides a name space for addressing segments that is much

smaller and denser than the global unique identifier name space.

The increased efficiency of representation ind mapping of this

name space is achieved by restricting the scope of the

machine-oriented segment identifiers.

The local machine-oriented name space in our model is

patterned after the Multics segment number name space. Like

unique identifiers, segment numbers are compact, fixed-length,

machine-oriented names. Unlike unique identifiers, relatively

few segment numbers are supported (1) and segment numbers are

-24-

mm*^-^!^^**^ .. IB. jiiuiJiwiiwiii.inHi m —^^fiWir-^iWW^ip ^mmm

locally dense so that simple, efx'icient hardware translation

techniques can be used. Since segments will be identified to the

base level of the computing utility by segment number, we will

call a segment number name space an address space.

There are many possible choices for the scope of

segment numbers. A cooperating collection of processes could

share a common segment number address space. Segment numbers

could be private to a process, shared by all domains in that

process. Conversely, the scope of a segment number could be a

domain. It is even possible to imagine a system in which the

scope of a segment number is temporally restricted. The choice

of which of these or other possible schemes for limiting the

scope of segment numbers is appropriate for a given computing

utility depends upon both the hardware on which it must run and

the desired patterns of interaction within the computing utility.

The larger we allow the scope of a name space to be, the greater

the cost of translating names in that name space. Conversely,

the smaller we make the scope of a name space, the fewer the

naming needs it can satisfy.

If we desire inter-domain communication to be

efficient, then it would be inappropriate to restrict the scope

of segment numbers to a domain. Were this done, segments could

(1) Multics supports a local, machine-oriented name space of
about four thousand segment numbers.

-25-

■T" \m mm>M'mmm*vmfmmmm*'i'i"i-' ■'■>>'■-' m,**'~*miimmm*mmm** IPPVi^*^iiwin .um. iwiiiiiuuMiiii, i. nun

only be named in inter-domain communication by unique identifier

or, worse still, pathname. Since these names are not directly

usable by the base level hardware of the computing utility, they

would have to be mapped by the receiving domain into its segment

number address space before the segment named could be

referenced. By similar reasoning, if inter-process communication

occurs with high frequency in a particular computing utility then

that computing utility might choose to share a segment number

address space among a group of cooperating processes.

The choice of the scope of segment numbers represents

an engineering trade-Oi.^. We must limit the scope of segment

numbers so that they may be efficiently implemented in hardware.

Additionally, the smaller the scope of a- segment number the less

its need to be protected. If an address space is local to a

protection domain, then it may be freely manipulated by that

domain without compromising security. In opposition to the

efficiency considerations that weigh in favor of reducing the

scope of segment numbers is the desire to make the scope of a

segment number as large as possible so as to make communication

between different computer systems, processes, domains, and

moments in time as efficient as possible. The desired

characteristics and resources available to each computing utility

must be carefully evaluated to determine the largest group of

interacting objects that can share an address space without

making the address space unacceptably large.

-26-

u

M^^ww —— wmmmm ~ 'W1'1"'111 wmnamimmmmmrmmm

Routine communication between the security keinel

domain and other protection domains in a computing utility should

probably, for performance and modular programming reasons, be

performed by using segment numbers to denote segments. This

requires that the ability to manipulate the segi.ient number name

space we have just defined be controlled by the security kernel.

This need for the security Kernel to control the manipulation of

an address space would not arise if add.'ess spaces did not span

protection domains. The reader should take note of the fact that

since segment numbers do not have global scope, our global

user-oriented name space cannot be implemented by binding names

to segment numbers. Figure 2-3 extends our model to include the

protected binding of segment numbers to segments and their access

control lists. We also include a protected binding between

segment numbers and unique identifiers. This binding allows the

identity of a segment named by a segment number to be

established.

USER ORIENTED MACHINE ORIENTED
NAMES NAMES

PER-SYSTEM

PER-ADDRESS SPi

<PATHNAME> ++++++++++ <UID> +++ <SEG/ACL>
+ +
+ +

<SEGN0>

Figure 2-3: Local Machine-Oriented Names

-27-

■iiaillifcii i — - i i i IIWIIIII in

pp— l"W w^pp """■ll" iPMnMM wmmm

2.5 Local Descriptors

Economics require that we refine the segment number to

access control list and segment translations depicted by our

model. These translations must be performed upon every -eference

to a segment. It is thus essential that they be efficiently

implemented. In light of current computing technology, these

translations must be performed ^n hardware if we desire our

computing utility to be economically feasible.

Contemporary computing hardware supports neither the

ability to address arbitrary amounts of storage nor the ability

to perform the necessary access control lis*-- search upon every

reference to a segment. To solve these problems one frequently

finds two high-speed, hardware look-aside memories aiding the

processors that implement a computing utility. One associative

memory maps a segment number and domain identifier into a

hardware interpret?ble representation of the domain's access to

the segment specified by that segment number. We will call the

entries in this associative memory protection descriptors (PDS).

The other associative memory maps a segment number into an

addressing descriptor (ADS) that allows the hardware to address

the representation of a segment.

The processors we have described look up the address of

a segment in their addressing descriptor associative memory and

-28-

—^mmrnrnm " '

validate their authority to reference the segment with respect to

the appropriate protection descriptor found in their protection

descriptor associative memory. When one of these descriptors is

not found in its associative memory, a hardware fault will be

recognized. At this point software may intervene and take the

appropriate steps to load the necessary descriptors and restart

the faulted program.

Clearly the security kernel must control the

manipulation of the protection descriptor and addressing

descriptor name spaces. This is necessary since there exists a

one-to-one correspondence between addressing descriptors and

protection descriptors which must be maintained to preserve the

integrity of the system's access control mechanisms. Figure 2-1

refines our previous model by supplanting the protected segment

number to segment and a-^ess control list mapping by the four

protected mappings described above.

USER ORIENTED MACHINE ORIENTED
NAMES NAMES

PER-SYSTEM

PFR-ADDRESS SPACE

PER-DOMAIN

<PATHNAME> ++++++ <UID> +++++++ <SEG/ACLx
♦ + +
+ + +

<SEGN0> + <ADS> + ♦
+ +

<PDS> ++♦♦++++++++++++

Figure 2-1: Local Descriptors

-29-

__. _

qmnm^m ■ i ■ i i mmummmmmiiimimm

2.6 Local User Oriented Names

We have seen that efficiency considerations require our

model to support a limited-scope, machine-oriented name space.

It is only natural to consider whether there would be any

advantages in our model also supporting a user-orientec1 name

space of limited scope. The answer is, quite emphatically, yes.

Like the segment number name space we have defined, a

user-oriented name space of local scope would be easier and

faster to search than its global counterpart. But more

important, it would provide a private name space that could be

manipulated arbitrarily without worrying about interactions with

processes outside of the scope of the name space. This latter

ability is necessa/y In providing modular programming facilities.

It is cl*?^ that a program should not code into itself

the unique identifier or even the pathname of another program,

such as a square root program, that it wishes to call. This

prematu e binding between modules would require that the first

program be changed and recompiled if a new and bettei square root

program was added to the computing utility. The caller of a

square root program does not, in general, wish to be bound to a

particular square root program. If the choice of which routine a

procedure is to call can be delayed until the call is made, then

we gain much flexibility.

-30-

mmmm**m* mm mmmmmmmmmm

We call a name that one program uses to refer to

another program a reference name [01] if its meaning is only

defined in relation to a local name space. Such a local

user-oriented name space is called a reference name space. One

way to implement a space of reference names is to maintain a list

of reference name to segment associations [01]. Another

mechanism for realizing a reference name space, found in many

jontemporary computer systems [J1, II], involves searching an

ordered list of specified directories, called search rules, to

resolve inter-program references. Reference names provide a very

useful mechanism for combining separately conceived subsystems

and testing new subsystems all of whose components have yet to be

written by allowing reference name to segment binding to be

defered until the components of a subsystem are combined for

execution.

In our model, each domain will have a private reference

name space. This minimizes the problem of naming conflicts and

allows each protection domain to operate without regard to the

reference names used in other domains. A further advantage of

per-domain reference names is that they need not be explicitly

protected or controlled by the security kernel. Since reference

names are private to a protection domain, each domain may freely

manipulate its own reference name space. All that is required is

that the reference names of each protection domain be stored in a

segment accessible to only that protection dor-ain. If reference

names spanned protection domains, it wou^d be necessary for a

-31-

- - - ■- -:-

•^-^mmmmmmmmmmm 111 ' "i"«1" nmm ' •" "• " ■

security kernel mechanism to control the manipulation of

reference names to prevent one domain from exerting uncontrolled

influence over another domain through the manipulation of

reference names. Figure 2-5 shows the relationship of the

unprotected reference name space to the other name spaces

described so "ar.

USER ORIENTED
NAMES

MACHINE ORIENTED
NAMES

PER-SYSTEM

PE.l-ADDRESS SPACE

<PATHNAME> ++++++ <U1D> +++++++ <SEG/ACL>
+ + +
+ + +

<SEGN0> + <ADS> + +
+ +

PER-DOMAIN < REFERENCE NAME> .'. ++ <PDS> ++++++++I

Figure 2-5: Local User-Oriented Names

2.7 Summary

In this chapter we have investigated the basic roles

played by name spaces in a typical computing utility. Of the

eight name spaces we have described, only the per-domain

reference name space may be excluded from the security kernel

without jeopardizing the ability of the computing utility to

control user interactions. The critical difference between the

reference name space, which can be uncontrolled, and the other

seven name spaces we have considered, which must be controlled,

-32-

mmm^^mm* wmrnmmr'**' mmmmmmmm ^•^^^W III (IP M U I I

is that the reference name space is not common to mu.tiple

protection environments. Since it cannot be used by one

protection domain to exert influence over another protection

domain, it need not be implemented in the security kernel.

-33-

——^- -^.—. . WHUJHHiHIMkiMi - — ■ -

"-•'——■' mmmmm "'■"■," WWPPWWPW«»HPF»WP^ i..,.j,.., .p.. , mm ,.„

Chapter III

A Model of the Multics System

Before approaching the specific problem of defining a

security kernel for the Multics system that does not support

unnecessary name space management mechanisms, we will present a

detailed model of the Multics system and show its correspondence

with our general computing utility model. Our Multics model

contains four components: a storage system model, an information

protection model, an address space model, and a reference name

model. These models will contain sufficient detail to allow the

reader who is unfamiliar with the implementation of Multics to

compiehend the important jtails of the design we will present.

3.1 Storage System Model

The Multics storage system (1) manages two distinctly

different types of cojects called segments and directories.

These objects are organized into a single system-wide tree

structure that is known as the storage system hierarchy. This

hierarchy implements the system's human-oriented global name

space. The internal nodes of this hierarchy are directory

objects. Each directory object is itself composed of a named

(1) A more complete description of the Multics storage system
than will be presented in this section may be found in Organick
[01] and Bensoussan [B1].

-34-

mi**^mqimmmm^^*^mwr*mvjim** j ■•■■■ " ■»■',•-»« P. mi\\m*"iw n«

collection of entries, one for each immediately inferior segment

or directory in the hierarchy and one for each link in the

directory. Links are psuedo-objects in the hierarchy that allow

an object to appear to reside at several distii.ct nodes in the

hierarchy. To accomplish this, tie directory entry of a link

contains the pathname of another object or link in the hierarchy

that is to be considered as the target object of the link. The

directory ent.^y of a segment or directory object contains many

important attributes of the object. Among these attributes are:

a system-wide unique identifier, a collection of human-readable

names for the object that are unique within the directory, an

access control list, and a file map for the object that allows

the system to access the object.

Each directory in the Multics hierarchy is stored in a

separate segment. Many advantages accrue from supporting a

hierarchical name space whose directories are implemented in

separate segments. These advantages are closely interrelated.

First, since each directory contains only a small fraction of the

total name bindings represented by the hierarchy, it may be

searched much more quickly than a corresponding single segment

implementation of the wh •>le hierarchy. Finding a name in a

hierarchically organized name space requires searching only those

directories defined by the prefixes of the name. In general,

this will represent a substantial savings in search time.

Second, the component names in a directory may be viewed as

-35-

i.IM. ■um.
I '«II' "'"'"I

 wi.iii Mini— i ■. iiimwi i 11111111«n miiiii , n

uniform, unstructured names. Finally, the names in a directory

can be relatively small and yet still be unique.

As we have mentioned, a practical computing 'tility

cannot assume that all users will be benevolent with respect to

their manipulation of a global, shared name space. We must

assume that some user, through malice or accident, will attempt

to delete or modify name bindings that other users are depending

upon. If this global name space is to be useful, then users must

be able to control or at least know who may change the nam^

bindings that are of interest to them. Controlling who may read

the name bindings in a particular directory of a shared name

space is also desirable since the names in a directory might

themselves constitute sensitive information.

Since segments are the basic unit of access control in

Multics, it is only natural to control the manipulation of the

names in a directory by the Multics segment access control

mechanisms. This approach is quite attractive since it allows

the name bindings in a name space to be protected without

introducing any new, special purpose access control mechanisms.

The access control list of a directory specifies which principals

may read and write its representation. In this way, the normal

access control and authorization mechanisms of Multics

automatically provide a certain degree of control over the

manipulation of names in its hierarchical name space. Multics

-36-

MtaM||Haaaka_Ml^M|i* iMiri

mm^mn^^m^m*** i iMiPMii-niiMiMUMiiiiii „i u iiiii.jiiwiwuii«p<«<qwnppn n^imjiBiir^nBH

actually provides finer access c >iitrol on directories than is

afforded by its hardwarti enforced access control mechanism by

encapsulating directories and a set of system-supplied procedures

which manipulate directories in a protected subsystem [SI]. The

procedures in this protected subsystem, which must be a part of

the security kernel, exercise control over the use and

manipulation of the name bindings in a directory.

If we assume that the root directory of the hierarchy

is its own parent, then every object in the Multics storage

system has a uniaue parent directory. Furthermore, since the

hierarchy has the structure of a tree and names of directory

entries are unique within that directory, we can specify an

arbitrary object in the hierarchy by an ordered list of entry

names. Such a specification is called a pathname. The first

component of a pathname names an entry within the root directory,

and each additional name specifies an entry within the directory

specified by the list of names that preceeded it. By convention

we take the name of the root to be the null name, and we write

the pathname a, b, ... q as >a>b>...>q.

A leaf node of the Multics hierarchy can oe either an

empty directory, a link, or a segment. Segment objects, which

are implemented directly by the Multics hardware, are primitive

objects in which programs and data are stored.

-37-

-- ■—■ ■--- — _

..„.,..... ,„.. .,,..M. mm ^'»mm "^-^
—-W,

In our general computing utility model a dirjctory

entry consists of one name to unique identifier mapping stored in

a directory of the user-oriented hierarchical name space. The

issue of where to store the access control list and other

attributes of a segment or directory, which was not addressed by

our general model, was resolved in Multics by merging this

information with the entries of its hierarchical name space.

This scheme has three important consequences. First, because a

directory entry contains the attributes of the segment it names,

no two directory entries in the hierarchy are allowed to describe

the same segment. (1) This requires that an entry contain all

synonyms of the object it describes. In our general computing

utility model this was not necessary since there was no penality

associated with allowing multiple entries (single name to unique

identifier mappings) to denote the same object.

Second, the unique identifier to segment name space of

our general computing utility model exists in Multics only as a

collection of individual mappings scattered throughout all

directory segments in the hierarchy. This renders the task of

locating a segment given its unique identifier prohibitively

expensive. However, Multics does use unique identifiers to

facilitate the determination of whether two objects denoted by

different pathnames are in fact the same object.

(1) If this rule were not obeyed, then the system would be faced
with the error-prone task of maintaining identical, but separate,
copies of the attributes of a segment.

-38-

 I Ml

111 ■ " \^mmmmmmmmm»

Third, because the access control list of an object is

stored in the object's superior directory, it is not possible to

have the access control list on that object arbitrate access to

the object independent of the access control l.'^ts on the

object's superior directories. To see that this is true all we

need do is consider t;ie following scenario of a process

attempting to reference a segment Assume that the access

control list of the segment specifics that the process is

authorized to reference the segment, but that the segment's

directory entry resides in a directory to wnich the process has

no access. The system is faced with a paradox. If it allows the

process to reference the segment, then it must allow the process

to use information in the segment's directory entry. But the

process is not authorized to use information in the directory

containing the entry. Thus, if the system permits '-.he process to

reference the segment, then it must violate the authorization

specified in the access control list of the containing directory.

Conversely, if the system does not permit the process to

reference the segment, then it must violate the authorization

specified in the access control list of the segment. This

dilemma will be discussed in detail ii the next chapter.

-39-

.. „„wm^m m^mm mi. i ■> mmm*mimim m~m* •■^-^■"^»wnpw^'«»'!«*'« ppwwpwwi ^m

.

3.2 Information Protection Model

The active agent of computation in MultJcs is a

process. A process may execute instructions in ar.y of eight

protection domains, numbered from 0 to 7. These domains have the

property that a process' access rights to objects in the storage

system while executing in domain n are a subset of its access

rights while executing in domain n-1. Domains that are so

constrained have been named rings [S2]. To identify the user on

whose behalf a process is executing instructions, the system

associate." with each process an unforgeable principal name. This

access control name is used to establish a process' rights to

access directories and segments in the storage system hierarchy.

Associated with each segment and directory in the

storage system hierarchy is an access control list which, in

conjunction with the access control name and ring of execution of

a process, completely determines the access rights of that

process to the object. The access control list in the directory

entry of an object encodes the access mode or rights each

principal is to have to the associated object in a given

protection ring. (1)

(1) In the current Multics implementation both a segment's access
control list and its ring brackets must be considered to
determine the access rights of a principal to the segment in a
given ring. Since this level of detail is unimportant for our
purposes, we will imagine that a segment's access control list
alone is sufficient to determine access.

.40«

uiaiiil i i-iuiMU'MnnmimpiipmM'iPi '■■ ""^ "■'■"' " ■«.in iiiHiiiimm<iPw««wiwnP9i*ainaHRR*p

When a process attempts to reference a segment or

directory, the system evaluates the process' access modes to the

target object. Conceptually, this involves searching the access

control list of the object. This information is used to validate

the process' right to perform a given operation upon the segment

or directory. In the case of evaluating access to segments,

Multics relies upon the hardware associative memories described

in our general model to make access validation efficient.

For segments the valid access modes are read, write,

and execute. These access modes are enforced directly by the

Multics hardware. The valid access modes for directories are

status - the right to read the attributes of the entries in the

directory; modify - the right to change the attributes of the

entries in the directory; and append - the right to add new

entries to the directory. Directory access modes are

interpretively enforced by the Multics security kernel.

Links, which are not full fledged objects in the

Multics hierarchy, are not given an access control list.

Instead, access to read the contents of a link is granted to any

process that has status permission to the link's containing

directory.

-m-

'wmmur !..>,.._ ip-Tw ■ iianiKWiiiiiiKip. in 11 mmm mim~**~~~** '•""• "

The process of a normal user executes in protection

ring four. This allows the process to access only those segments

and directories to which it has non-null access in ring four or

some higher numbered ring. In order to access a storage system

object accessible to the process only in rings numbered lower

than four, a user process must enter an appropriate lower ring.

This may be done only by calling a procedure which is designated,

by its access control list, as a gate into that ring. When such

a gate procedure is called, the process enters the inner ring.

By virtue of its having entered an inner ring, the access rights

of the process may increase. When the process returns from the

gate procedure, it reenttrs its previous ring of execution and

relinquishes the access rights it gained on entry to the lower

ring. To put teeth into this protection mechanism, the storage

system manager will not allow a process to create a gate into a

lower ring than the ring the process is currently executing in.

This insures that only procedures authorized to run in an inner

ring may create gates into that ring. (1)

The Multics system takes advantage of this ring

protection mechanism to protect its security kernel programs and

data bases from tampering by non-kernel procedures. This is

accomplished by setting the access control lists of security

kernel procedures and data bases to indicate that they may be

Li .

(1) More complete descriptions of the Multics protection
mechanisms may be found in Saltzer [S3], Schroeder [S2], and
Organick [01].

-42-

A - -■■

lUJiimwmijjiM i «...nil i.«iOTii|i!|iwiiiigia|ii|iniiiawiw*^px^n^iMw««^i—_

accessed only by processes executing in protection ring zero.

Entry points in the security kernel which are callable by

non-kernel procedures are declared to be gates into ring zero.

3.3 Address ppace Model

The Multics system associates an address space with

each process [B1]. The function served by this address 3pa»_e is

to provide a mapping from a small set of virtual addresses,

called segment numbers, that can be directly translated by the

Multics hardware, onto the much larger set of objects in the

Multics hierarchy. This segment number address space corresponds

to the local machine-oriented name space defined in our general

computing utility model. In the Multics system every process has

a potential address space of several thousand segment numbers.

The binding of a segment number to a storage system

object, which incorporates a storage system object into an

address space, is called initiation. The effect of initiating a

storage system object is to make the representation of that

object appear directly addressable by the hardware of the Multics

machine. Since Multics relies upon addressing and protection

descriptors, such as those described in our computing utility

model, to implement hardware references to segments, only a

fraction of the hardware segment number to segment mappings

implied by a process' address space need exist at any given

as-

—-~_—_ """ 1 ■ ■" m *~**mm*immm wmmmmmm

instance. As in our computing utility model, the Multics

security kernel handles faults caused by attempting to use

raissinfe descriptors by reloading the missing addressing or

protection descriptor and restarting the faulted process. The

unbinding of a storage system object from a segment number, which

removes the object from the process' address space, is called

termination.

Our discussion may have lead the reader to the

conclusion that a process may have several segment numbers bound

to the same storage system object. Actually, this is not

permitted by the address space manager. During the initiation of

an object, the address space manager locates the directory entry

of the object from which it fetches the system-wide unique

identifier of the object. This identifier is looked UD in a

per-process table (1) that maps unique identifiers into segment

numbers. If the unique identifier is found in this table, then

the object is already in the address space of the process. This

being the case, the initiation primitive returns an indication to

this effect as well as the segment number that is bound to the

object. This scheme has several advantages. First, it helps a

process conserve its segment numbers - a very scarce resource.

Second, it permits a process to test the identity of two objects

in its address space by comparing the segment numbers assigned to

(1) See appendix A.

-44-

 t^ttmm^m^^.

rqim*vm^^immiimm*mmmmmmmmim^™^ iW*mwmn'mmmvmm«*Bm* * '^*mmmmmm^il

.

.

these objects. Finally, it simplifies the management of the

Multics virtual memory.

3•^ Reference Nam? Space Model

We have asserted that local user-oriented name spaces

in a computing utility need not be part of its security kernel.

This claim not withstanding, the Multics supervisor implements a

reference name space for every ring of every process. These name

spaces provide a mechanism for mapping character string; names

into segment numbers and vice versa. In the current Multics

implementation only segments may be assigned reference names.

The security kernel itself does not use reference names for

normal segments. It does however misuse its unique ability to

assign reference names to the segments with which it implements

directory objects. (1) Specifically, the Multics supervisor uses

the reference name manager to associate the hierarchy pathnames

of initiated directories with the segment number of ehe segment

containing the representation of the directory. As we will see

in the next chapter, this presents problems when directory

objects are renamed. This problem will be discussed in great

detail in the ensuing chapters.

The address space manager and reference name ma'.ager

share a common data base in the current Multics implementation.

(1) In non-kernel domains directory objects are sealed and may
not be accessed as segment objects.

-45-

!l|IVVPPmH*W|in*"*,*,mp ' x " >>.«■•■«!•«"«"«'>-wJi ! • i' -. Jimmmm^mw^m^m

This combined data base is called the £nown Segment Table and is

documented in appendix A. The reader who is unfamilar with the

structure and contents of the KST is urged to review this

material. Additional information on the Multics reference name

manager may be found in Organick [01] and Bensoussan [B1].

-H6-

— — -—— "',l"1* '■ nm^mm^mm*i^'*i^**^^™*^mmrimm!mm*mmmmqm

Chapter IV

Design

The Multics designers recognized the advantage." of

building a computing utility on top of a central security kernel.

As a consequence, Multics is more fortunate than most existing

computer systems as regards its securability. By construction

mosi modules of the Multics system are not permitted to execute

in protection ring zero. This bulk of code is thus prevented by

the Multics protection mechanisms from tampering with those

programs and data that are only accessible from protection ring

zero. These protected programs constitute the Multics security

kernel. Although the portion of the Multics supervisor that lies

outside of the security kernel dwarfs the security kernel in

comparison, the modules of the Multics security kernel are still

quite numerous as well as complex. The object modules of the

Multics security kernel presently represent approximately one

hundred and fifty thousano machine instructions. These

instructions implement in excess of two hundred user callable

functions as well as a host of implicit system services such as

demand paging.

We will present a redesign of the current Multics

security kernel that will enhance its certiflability by reducing

its size and number of external interfaces. As a side effect, we

will also improve the modularitv and coding of the area of the

-47-

wmmmmmm wmi^^mfmmm^m^m -w

system we will investigate. Our design will eliminate the need

for the Multics security kernel to support reference name

management. This requires that we carefully redesign and

remodularize ring zero so that it is independent of the reference

name manager. This is necessary since a security kernel must not

depend upon the correctness of procedures outside of the kernel.

Before getting into the details of our design, wt will

investigate the reason behind ring zero's current dependence on

the reference name manager.

1.1 Security Kernel Dependence on Reference Name Management

While there does not appear to be any intrinsic need

for the Multics security kernel to support reference name

management, its removal from ring zero is complicated by the fact

that the Multics address space manager uses the facilities of the

reference name manager to maintain an association between the

pathnames of directories it has initiated in a process and the

segment numbers of these directories. The address space manager

uses these associations to "»void having to repeatedly resolve

identical directory pathnames into segment numbers. Since the

security kernel must not depend upon a mechanism outside the

security kernel, it is necessary to decouple the address space

manager from the reference name manager before the latter can be

removed from ring zero.

-48-

w ^nwrnm \\m m ""• llupl,

The dependence of the address space manager upon the

reference name manager manifests itself in the recursive

procedure find_ which the address space manager uses to resolve

directory pathnames into directory segment numbers. This

resolution is necessary since the hardware base of the system

only implements references to storage system objects by segment

number. When find_ is invoked to determine the segment number

for a directory, it calls the reference name manager to map the

pathname it is given, interpreted as a reference name, into 3

segment number. If the pathname is a reference name known in

ring zero of the process, then find_ returns the associated

segment n mber as th3 segment number of the directory. (1) If

:he pathname is not a known reference name, then find_ splits the

pathname into a pathname of the parent directory of the target

directory and the directory entry name of the target directory.

It then calls itself recursively to obtain a segment number for

the parent directory. Using this segment number to reference the

parent directory, find_ attempts to initiate the target

directory. If it succeeds, it calls the reference name manager

to bind the pathname of the target directory, as a ref-jrence

name, to the segment number assigned to the target directory.

(1) As we will see later, this can cause problems sinoe this
segment number may no longer be bound to the directory specified
by following the pathname find_ was given step by step through
the directory hierarchy.

-49-

1 k MMMHHMrillfcMMMlUMMIIil

m^^mmm^**** mum m**immm*mB* ** ■••'—•—'■

This tnesis suggests a radical change in the ring zen

address space manager. The essential resuxt of tnis change is

that find_, as described above, need no longer be called by ring

zero. Tnis allows both find_ and reference name management to be

removed from ring zero.

U.2 Source of the Dependence

One of the basic goals of the Multics protection

mechanism is that a process should he unable to detect the

existence of a storage system object to which it has no access.

(1) A second basic goal of the Multics protection mechanism is

that the access control list of an object should be the sole

specifier of acces.? to ^he object. (2)

(1) We will consider that if a process has access to the parent
of an object then it has sufficient access to determine the
existence of the object. The reason for this will be discussed
later.

(2) This
Originall
different
directory
control
object's
The last
The resul
allowed a
an object
when his
the objec
that man
protectio
rieeds on
access to

goal was
y a proce

access
entry of

list we
parent an

list w
t was a v
n unwary
by remov
intenti

t. The c
y of th
n mechani
ly revie
a given

not o
ss' a
cont
the
now

d was
as a
ery c
user
ing t
on wa
omple
em J
sm.
w on
segme

rigin
ccess
rol 1
obje
have
comm

one p
omple
^.o in
nat p
s act
xity
id n
With
e ice
nt.

ally embodied in the Mul
to an object was a func

ists. The first list wa
ct and corresponds to

The second list wa
on to all entries in th
er system master access
x access eviluation me
crease a principal's ace
rincipal from cr.e access
ually to deny the princi
or this mechanism so co
ut attempt to use the sy
the current Multics de
ess control list to dete

tics
tion
s par

the
s par
e di
contr
chani
ess r
cont

pal a
nfuse
stem
sign
rmine

design.
of three
t of the

access
t of the
rectory.
ol list,
sm that
ights to
rol list
•c-^ss to
d users
provided
a user
who has

-50-

' «"HI "" WUMIII »■ppppwpwuw^ir^'- - - w^-^ummii^*!***'«' ■'■• ■'"«i .ijiKPPMwmnnpi

These goals have made the determination of whether a

process should be permitted to initiate an arbitrary directory

quite difficult. This difficulty stems from the fact that the

access control list of an object and its physical storage map

reside in its parent. Since we wish the access control list of

an object to exercise complete control over access to that

object, we must permit a process to initiate all superiors of

accessible segments independent of access to these superiors.

But this violates our second goal.

Multics attempts to resolve the conflict outlined above

by not permitting a process running outside of ring zero to

initiate a directory. Since a process cannot read the access

control list of a segment until its parent is known, the system

still must permit processes, while executing in ring zero, to

initiate directories that they may not have the right to know

exist. By causing the initiation of these superior directories

to occur in a single, indivisible ring zero call, the system

could, in principle, prevent security leaks. This could be

accomplished ty terminating those intermediate directories that

had to be initiated only to find that the process had no access

to the terminal segment, before returning to the caller.

Unfortunately, Multics system 24.2 does not do so. As a result,

any process can determine the existence of any postulated

directory by attempting to initiate any arbitrarily named

descendent (which need not exist) of that directory and observing

-51-

f/Al

•ivwiwii Ji ii MiLiiifiiMiqiipMnpiiiiipii^rnill^lllPippiPH«!«! i.. iimimmn**'

how many segment numbers were allocated by ring zero. This is

possible because all rings share a common address space.

It would be relatively easy to correct the

implementation flaw in the Multics address space manager pointed

out above. However, the system would still have to be very

careful to avoid compromising information. For example, suppose

a process filled up its address space intentionally and then

called ring zero to initiate >secret>x. If ring zero was not

very careful, it might cause the process to die due to its

inability to find an unused segment number to bind to >secret, if

and only if >3ecret existed. This would allow the existence of

>secret to be inferred by whether or not the process died.

The inability of a process to initiate directories in

outer rings directly has led to many needlessly complex

mechanisms for manipulating directories. In addition, it has

forced us always to refer to directories by pathname in the

security kernel interface. Not only is this inefficient, but it

has led to ring zero's dependence upon find_. If we could

initiate directories directly outside ring zero, then the ring

zero interface coi.ld take a segment number instead of taking a

pathname as a directory specifier. Since ring zero would no

longer need to call find_, it could move out of ring zero, along

with reference name management, without compromising the security

Of ring zero.

-52-

i ■■! ,....- ,—. .,.:...^.J. i Mimtmm uaiiiiriii

wm^mmmmmmmmmmmmmmmmm wmmmm^mmw ■ u iwmmmmm*mm mKsmm timimm am nui

M.3 Removal of the Dependence

4.3.1 Overview of the Design

We propose allowing directories to be initiated by

processes executing in all rings. As was noted earlier, the

basic problem to be solved is that of deciding whether a

process should be allowed to initiate a directory to which it has

no explicit access. (1) There are essentially four schemes for

making this decision. The first scheme involves recognizing that

if the access control list of a directory is to completely

express access to that directory, then we must make explicit the

now "hidden" permission to initiate a directory if some

descendent of the directory is accessible to the process. The

obvious way to accomplish this is to invent a new directory

access mode called "initiate". This mode would allow the named

principal to initiate a directory and to use the information it

contains that is relevent to accessing descendents of that

directory. This makes the decision of whether or not a process

should be allowed to initiate a directory quite simple. If the

process hao non-null access to the directory, then it may

initiate it. Otherwise, it may not.

(1) The reader should note that we are ignoring, for the purposes
of this thesis, the possibility of solving the problem outlined
above by removing the attributes of a segment from the directory
hierarchy. Removing the attributes of a segment from its parent
directory, which may be the best long term solution, seems very
attractive but requires a fairly extensive overhaul of the
system. This thesis will investigate less drastic solutions to
the directory initiation problem which do not disturb the
structure of the Multics hierarchy.

-53-

aiftbaAMM^ai *--- - —-

ii«. y i im . in i JIL ii.. . I WVIW LIK^ .if-^-r-^-

^

This scheme does not meet the goal that the access

control list of an object completely express which processes may

access that obiect. While explicit initiate permission is

probably a workable solution, and its simplicity is appealing,

adoption of such a solution would produce a quite noticable

change in the system's functionality. We choose to explore

alternative solutions that maintain the current system's

functionality.

A way to maintain the current functionality of Multics

using explicit initiate permission is to couple the access

control list on an object with the access control lists on all

superior directories, so that when a process is given access to

an object it is also given initiate access to all superior

directories of that object. When a process subsequently is

deni'H access to an object, the security kernel must remove any

initiate permission that the process had to the superior

directories of the object and that resulted solely from its

having access to the object. Determining which initiate

permissions should be removed is very difficult, potentially

requiring that the entire directory hierarchy be examined.

A second way to decide whether a process may initiate a

directory is to search the hierarchy subtree rooted at that

directory. If the process has non-null access to any member of

-54-

I ,3^^l

'•■ Ml ' mnmmmmm^^mm ' II I I II i .»IIIIIMl PUll.l.l

this subtree then the process should be allowed to initiate the

directory in question. Naturally, this scheme is far too

inefficient to consider seriously.

A third method of deciding whether a process may

initiate a directory is to require non-null access to the

directory. This scheme has the disadvantage, shared by the first

scheme discussed, of preventing the access control list of a

directory or segment from being the sole arbiter of access to

that directory or segment. In order to initiate a segment, a

process would need non-null access to the superiors of that

segment.

We propose a fourth solution to the problem of

initiating directories. Instead of worrying about whether or not

a process has the right to initiate a directory, let us allow all

processes to initiate any directory - whether or not it exists.

The key to this scheme is preventing the process from detecting

any difference between an initiated directory that does not exist

and an initiated directory that exists but that the process has

not proven its right to know exists. How this is to be done

will be discussed later.

The ring zero address space manager interface resulting

from this approach seems quite natural. Ring zero no longer

concerns itself with pathnames. Instead, it accepts directory

segment numbers for directory specifiers. To allow this scheme

-55-

^-M, riiMiiMaiM^iHHiüaMHiaiiii

mgmtmm^mmmmmmmmmm* P»*^««W HUI uuiipiiiimiwiiiniiiii tmmmmmmmim'mim^^m^mmmF^m^^m

to bootstrap itself, we will define the segment number of the

parent of the root to be zero. Initiation of segments and

directories will be controlled by the procedure initlatr_ that

will accept a parameter specifing whether a segment or directory

is to be initiated.

The rationale behind distinguishing directory and

segment initiation is that a process usually has a preconceived

idea about the type of the object it wishes to initiate. When

reality does not support this preconceived idea, the process is

usually in error. Forcing the process to make explicit the type

of object it is expecting allows ring zero to immediately catch

many such errors, preventing a careless process from bumbling

along thinking all is well only to die when it attempts to access

a directory as a segment or vice versa. Naturally, it would be a

security violation for the kernel to report a type violation to a

process that has no right to know whether the directory or

segment named actually exists. If a segment or directory should

be undetectable to a process, then the security kernel must treat

it in ?. manner consistent with the type specified in the initiate

call regardless of its actual type.

To complete our new ring zero address space manager

interface we must define a new termination primitive. This

primitive will accept two arguments. The first argument

specifies the segment number to be terminated. The final

argument is a status code. It should be noticed that this

-56-

L - ■-'-—■■ .^.«MaM

wmmm^mm^m W ■IH.LUII.Ill wmmmm*mm^~*~

primitive may be called with either a segment or directory

segment nuraoer. In the case of terminating a directory, one

constraint is enforced. Since the system requires that a known

segment's parent also be known, terminate_ will not terminate a

directory with known inferiors.

4.3.2 Details of the Design

So far everything seems rosy. This scheme seems to

remove many functions from ring lero and to simplify the ring

zero interface in the bargain. Where is the hitch? Do we get all

this for free? The answer is, of course, no. We have glossed

over one important point. In order to decouple directory and

segment initiation we must be able to successfully cloak the

physical initiation of directories from a process' detection

until it has established its right to know of the existence of

the directory. As was pointed out earlier, this need for

deception is intrinsic to the hierarchy structure and

functionality of the Multics system. While this design makes the

system's need to deceive the user more obvious, it is not

responsible for the required deceit.

We will call a directory detectable if a process has

established its right to know that the directory exists.

Detectability may be established either by having non-null access

to the directory, by having non-null access to its parent, or by

establishing the detectability of an inferior of the directory.

-57-

— . iMm _^

,"1 ll" ' ' ' ' n" ■"" ■ « innmiuiii -ipiiLj. L.-vjLwmncw^^r--

The reason that non-null access on the parent of an object

establishes its detectabiiiLy is that either status, modify or

append permission to a directory is sufficient to allow a process

to detect if a postulated entry in that directory actually

exists. It should be noted that the detectability of a directory

is dependent on the process' history and the ring of »»xecution.

A directory is detectable by a process in rings zero

through the highest ring in which it has detectably initiated

some member of the tree rooted at that directory. This highest

detectable ring number of a directory is kept in its KSTE. (1)

We will not attempt to reset this field should a once detectable

directory subsequently become undetectable. Not attempting to

reset the highest detectable ring field in the KSTE of an object

when it becomes undetectable to the process makes sense since the

system has already admitted tue existence of the directory to the

process. The process could have stored this information

elsewhere, so it would be of little use to deny the existence of

the directory. The record kept in the KST of the existence of

the directory will naturally vanish when the directory is

terminated or when the process is destroyed.

We must prevent a process from detecting any difference

between an initiated directory that does not exist and an

initiated existing, but undetectable, directory. If a process

*

(1) See appendices A and B,

-58-

....-■,.. .„• ^

vmirn* ■■ M^rmmmmmmmmmmmmmmqt mn^iMHPWMniinpaw^^Mmp mmmm**'- -■■"• ^|

could detect a difference in these two cases then it could

establish the existence of an^ postulated path in the hierarchy.

This would constitute a clear violation of security. To

accomplish this means abandoning the current one-to-one mapping

that exists between occupied segment numbers and initiated

segments and directories. Although we will still only allow one

segment number to be bound to a segment, we must allow multiple

segment numbers for the same directory.

The reason for this dichotomy between segments and

directories is simple. Since the access control list of a

segment completely controls the right to initiate that segment

there is no need to allow a process to initiate a segment to

which it has no access. This allows us to hide the physical

existence of a segment from a process that has no right to know

of its existence by returning the ambiguous status code "noinfo"

in response to an initiate request. This simple mechanism fails

for directories since we must always allow a process to initiate

an existing directory in case it has access to some inferior of

that directory. This forces us to return more than one segment

number for a directory in some cases in order to prevent the

process from detecting the existence of physically initiated but

logically undetectable directories.

There are two characteristics of Multics that

necessitate our abandonment of the current one-to-one mapping

between directory segment numbers and directories. First,

-59-

i ui 4L|iw wp^-" - i<VA^!Mi ■ |i ^Mn^^v^v mMpum P»FW5^W«»«WWWMl' •«!!■ ~"*W"P"

directories can have multiple entry names. If initiate_ returned

the same segment number for two different- entry names within a

given directory, then the process would know that these names

both named the same directory. This coincidence of names would

establish the existence of the directory (if the directory did

not exist, then how could it have two names?). To prevent the

coincidence of multiple names on a directory from revealing the

existence of the directory, we must return a new segment number

if a process reinitiates a directory that is still undetectable

with a new name. In fact, w; will even return a new segment

number if it tries to initiate an undetectable directory with the

same name twice. If we returned the same segment number, then in

order for directories that do not physically exist to appear the

same to the user ring, ring zero would have to remember .he name

of every phoney directory. This is a neeuiess complication of

ring zero.

The second characteristic of Multics that forces our

abandonment of the one-to-one mapping between directory segment

numbers and directories is that the segment numbers of a process

are a finite resource shared among all protection rings of that

process. As we have commented earlier, the finite size of the

Multics shared segment number address space allows one ring to

detect the number of segment numbers being used by all other

rings. This makes it necessary to assign a new segment number

whenever an attempt is made to initiate an undetectable

-60-

^ iiüiMiii

■w^^w MW"."» mmi^mnmmmmmm^-^^mmm mmm>w*<mwvm*iTmmrwi'

directory. This segment number must not be shared with another

ring so long as the directory remains undetectable. The need for

assigning private, per-ring segment numbers to undetectable

directories may be seen in the argument that follows.

Assume the system returned the same segment number when

asked to initiate a directory in two different rings. Assume

also that the directory is undetectable in the upper of the two

rings. What is the system to do when asked to unbind the segment

number from the directory by the upper ring? It cannot unbind

the segment number and return it to the list of free segment

numbers since a lower ring is using the segment number.

Unfortunately the ring that requested the system to terminate the

segment number can detect whether or not the system actually

returned the segment number to the free list so the system cannot

just pretend to honor the terrination request. If the segment

number is not freed then the ring can deduce that some other ring

has the directory initiated. By an argument similar to the one

given in ehe previous paragraph the ring can conclude, from the

coincidence of two rings having the directory initiated, that the

directory actually exists. Since segment numbers are a scarce

resource, the system cannot take the easy out of rot allowing

undetectable directories to be terminated. As a result,

initiate, must assign a new segment number whenever it initiates

an undetectable directory.

-61-

■■- —" -■ . nimiMi ii i mmmm\ i i

~ ii iiimninwiM ii J mi iiiiinii i " l,"nl " pmanpi^^^iHiii * iivii

The reader should note that we have ignored, up to now,

the problem of preventing a process from distinguishing between a

non-existent directory and an existent but undetectable directory

through observation and analysis of second order effects such as

the t'.me required to initiate or terminate a directory. It is

hard to predict in advance of installation in the standard system

what sort of second order effects might be observed. The plan is

to investigate this problem following actual installat ior..

Timing differences can be easily hidden by inserting extra code

in the shorter path. Other differences also probably are

disguisable.

This scheme will merrily allow a process to initiate

vast trees of directories that do not exist. These directories

will be indistinguishable from real undetectable directories.

The potential multiplicity of segmerc numbers for directories

implies that if we compare two directory segment numbers and find

them to be not ecual, then we cannot conclude that the objects to

which they are bound are not one and the same. Since processes

•unning outside ring zero cannot currently obtain segment numbers

for directories, no user code can be affected by this new

restriction. To allow processes to quickly determine if two

segment numbers are bound to the same object, the system should

support a function for mapping a segment number into the unique

identifier of the object to whi^li it is bound. Naturally, this

function must return an error if the object is not detectable to

-62-

miF*~mmmw' " ■"■' wmmimr^'' mmmmmmp******* " immrm

the process. The system must also assure fiat if a process

attempts to reference through any directory pointer in an outer

ring, it will get the same access violation whether or not the

segment number it referenced corresponded to a real or phoney

directory.

Figure 4-1 summarizes the actions performed by

initiate_ when mapping a directory into a process' address space.

The reader should note that a target object within a phoney

directory is considered a priori undetectable and a non-existent

target object le considerei detectable by a process if the

process has non-null access to the containing directory. The

abbreviation ',hdr" used in figure 4-1 stands for the contents of

a KSTE's honest detectable ring field. We have omitted the case

wh^re the target is a link as this case will be discussed later.

target is detectable in ring of caller

target exists in hierarchy

target already has a segment number

return values | internal state

I status codelsegment numberj hd

10 - -! "no_info" | new
I 1 0 -! •'noentry" | none
jl 1 01 0 I new
11 1 1! "known" 1 old

ring of caller |
max(hdr,ring of call «r)I

Figure 4-1: Action of Initiate, for Directories

-63-

mmmmi^mi mi J i n .1 1 u iHm.iiuwMM m vm mmmmmm

Two possible objections we can see to this scheme are

that it can potentially waste segment numbers and it requireo

inspecting the parent's access control list. A close examination

of figure 4-1 indicates that there are only two ways to assign

multiple segment numbers to a directory. The first way is to

reinitiate an undetectable directory. Tne second is to initiate

a phoney directory. Neither of these operations should occur in

normal operation. They could, however, arise in an attempt to

use a misspelled pathname. To control this problem, the outer

ring variant of find_ could terminate those directories that

might be phoney if the terminal segment could not be initiated.

This would prevent a habitual misspeller from cluttering his

address space. It seems that with this addition a process would

be obliged to go out of its way in order to clutter its address

space. If that is what it wants fine. Even if a process wastes

all its segr.ent numbers, it can recover by terminating no longer

needed segment numbers.

The apparent inefficency of inspecting the access

control list of the parent of a directory during its initiation

is not serious since it is normally not required. Only when a

process has null access to an object and has not previously

established detectability for that object is it necessary to

inspect the access control list of the parent. (1)

(1) In fact, the frequency with which a process initiates a
directory to which it has has no access is low enough in Multics
that our test implementation does not check to see if a process
has previously established detectability for a directory to avoid

-64-

• - - ■ -

«—^^Wi mmmmmm

In Multics system 24.2 the address space manager and

the reference name manager share a data base. (1) The address

space manager takes advantage of its ability to access the

reference name manager's data base by scanning the per ring, per

segment number, list of reference names kept by the reference

name manager to determine which rings of a process are still

•jsing a particular segment number. This information is used to

prevent one ring from terminating a segment number that is still

in use b: another ring. (2) Only if all rings that initiated the

object have terminated it, can the segment number be unbound from

the objt n. Thus, we have the concepL of initiating an object in

a particular ring rather than the concept of initiating an object

globally in all rings of a process. This scheme is desirable

since all rings share the address space of segment numbers.

inspecting the access control list of the parent of the
directory. If the process has null access to a directory, then
we always check the process' access to the parent of the
directory.

(1) See appendix A.

(2) Since the address space manager uses the presence of
reference names in a given ring for a segment number to detect
that the ring is still using the segment number, the current
initiation primitive must call the reference name manager to give
a segment a reference name in the appropriate ring each time the
segment is initiated. The current initiate interface supplies
the address space manager with a reference for this purpose. A
more complete description of the relationship between the address
space manager and reference names in system 24.2 may be found in
ürganick [01].

-65-

L - ■ - HHHilliMMi

«"— wmmmmm^^^^nmmmm^^^^ i »i «iii'11 III«I wM^mmmmimm^mmmm

Since reference names will no longer be kept in the

KST, some new mechanism must be invented to supply information

about which rings of a process are still using £. given segment

number. This is easily accomplished bv adding an eight bit

field, called rings, to each KSTE. If the i th bit(0 origined)

in this field is on then the corresponding ring has the segment

number initiated. This allows ring zero to detect when a segment

number may be physically terminated, thereby preventing one ring

from terminating a segment or directory that is being used by

another ring. (1)

Our termination primitive marks the segment number it

is given as free in its caller's ring of execution. If the

segment number is initiated in no other rings and its inferior

count is zero, then the segment number is unbound from the object

and its KSTE is placed on a list of free KSTEs. It should be

carefully noted that the termination primitive terminates 3

single segment number; it only removes an object from the

process1 address space if the last segment number for the object

is terminated. The reader should notice that because initiate_

always assigns a private segment number when a directory is

undetectably initiated, terminate_ need not worry about re/ealing

the existence of an undetectable directory.

(1) Appendix B summarizes the content of the known segment
as we have redefined it.

table

-66-

wmmmmrmm* IMI mm""""' •'"'" ■"""-'.'•"- ■«■ I«WIJ an i

U.^ Removal of Pathname Processi DC

Ring zero's ability to resolve a pathname into a

segment number has been severely impaired by our design. This

ability, which was embodied in the ring zero procedure find_,

depended upon ring zero's ability to call the reference name

manager. Specifically, find_ depended on the reference name

manager to maintain an association between pathnames of objects

and the segment number bound to the object. Fortunately, this

association was only used to make find_ more efficient. As a

result, we could redefine find_ in such a manner that it would

still operate correctly but would not take advantage of such an

association between pathnames and segment numbers.

Li.

To make find_ independent of the reference name

manager, all we would need to do is redefine find_ to inspect the

pathname it was given to see if it specified the root, i.e. ">".

If it did, then find_ would initiate the root, and return its

segment number. (1) Otherwise find_ would strip off the last

component of the pathname and call itself recursively with the

pathname cf the parent of the target object to get its segment

number. Given this segment number, find_ would call initiate to

iniciate the entry named by the component which was previously

(1) The system treats the root directory as a special case. The
location of its physical object map as well as the rest of the
information that would reside in its directory entry, if it had a
parent, is embedded in the programs of the system. This
guarantees that the root may always be initiated.

-67-

. ■ ■

HL wi uiinil,« i iM.iiuii« iniiniimiiiMii Ji) mm. un ,.. - mn Jill«-

removed from the pathname. For example, if find_ were called

with >a>b it would call itself recursively to get a segment

number for >a. It would then call initiate to get a segment

number for the object named b In the directory >a.

While the procedure we have described is correct, it

appears to be quite inefficient. This inefficiency suggests that

we should either give find_ a new associative memory or move it

out of ring zero so that it can once again use the reference name

manager. Since giving find_ a new associative memory would add

code to ring zero which has no protection reason to be in the

security kernel, this alternative is untenable. Our approach

will therefore be to remove find_ from ring zero.

The actual removal of find_ from ring zero is, of

itself, trivial. In the outer rings it can access the reference

name manager directly once again. It can also access our new

initiation primitive through a standard gate into ring zero. The

problem is that numerous programs in ring zero depend upon find_

to map pathnames into segment numbers. Unfortunately, they

cannot be allowed to call our new find_ in the outer ring. To do

so would jeopardize the security of ring zero. To get ourselves

out of this dilemma, we will have to remove almost all uses of

pathnames from ring zero. This in itself represents a

substantial simplification of ring zero. To accomplish this task

we will consider the four major uses of pathnames in ring zero.

-68-

ipiiju^niw ^■i.iiMpiiwiiLUWiniaii Him* IBIMM i.ni mm wimmm^^mmm**** •wmmm'mfmmiimmmiif^mi'immmimr-

'l.^.l Parameters to Ring Zero

The first class of pathnames used in ring zero that we

will consider consists of those pathnames that were passed into

ring zero as an argument to a gate procedure. This class

represents the major use of pathnames in ring zero. Fortunately,

it is also the easiest class to remove from ring zero. Since

find_ now resides m the outer ring, we will make the outer ring

responsible for translating all pathnames that are currently

passed into ring zero into segment numbers. We will then

redefine all ring zero gates that accept pathnames as object

specifiers to accept segment numbers as object specifiers

instead.

U.4.2 Links

The second class of pathnames used in ring zero are the

pathnames contained in links. Many ring zero programs, when they

discover that the object they are to act upon is a link, are

defined to act instead upon the target of the link. Ar example

of a ring zero function that is defined to follow this rule is

the segment initiation primitive. (1) We propose that primitives

(1) To prevent a process from causing ring zero, which is masked
against interupts, from looping indefinately following a circular
chain of links, each program that follows links keeps count of
the number of links it traverses during each invocation. If this
number exceeds a certain system-specified threshold, then the
computation is aborted.

-69-

-'"" """ mm^mm* w—m.

which are defined to follow links return a status code indicating

that a link has been encountered as well as the contents of the

link itself, upon discovering that their target is a link.

This scheme requires that links be readable in the

outer rings which raises the question of what, if any, access

control should be placed on reading links. The approach taken in

Multics system 24.2 is to make links effectively readable by any

process that has non-null access to the terminal target of the

link. This scheme has an inherent security flaw and is therefore

unacceptable. If some process can guess the pathname of an

existing link to whose target the process has access, then it can

prove the existence of the parent directories of that link by

initiating the target object through the lirk. To eliminate this

security flaw we could place access control lists on links,

thereby explicitly naming those processes which may real the

link. The complexity of such a mechanism seems unwarranted when

weighed against its benefits. The only access control on the

target object of the link that is guaranteed is specified by the

access control list of that object. Any access control specified

on a link may be avoided by referencing the target object

directly and thus serves only to protect the contents of the link

itself.

The reasons that access to links must be controlled is

that the existence of a link implies the existence of its

-70-

-"—■—"-■-— - ■ ■ mjmaimim^^

^ii*mmmm*mmmmmp*'**i*m**m*^*m wmm* ^^■ lliniMIIUI ll.L IIIMIIIN111M ■<••> I ^mum^^**

superior directories and suggests the existence of its target.

We have chosen a simpler mechanism for controlli' g access to

links which, although not as comprehensive as a mechanism that

associates a private access control list with e-ich link, meets

both of the needs for protecting links. We consider « link to be

part of its containing directory, readable only Dy processes

having status permission on that directory. This scheme has the

virtues of being simple, easy to implement, and plugging the

information hole that uncontrolled access to links provide? in

system 24.2. While this scheme does make one class of currently-

legal uses of links illegal, this restriction does not seem too

severe.

To illustrate the scheme we have proposed, we will

outline the redesign of link processing by the ring zero

initiation primitive. When initiate_ encounters a detectable

link, it will return the link and a status code that informs the

cuter ring procedure that a link was encountered. (1) The outer

ring procedure may then try the rew path specified by the link.

Since this is happening in an outer ring, we need no longer have

a standard interpretation of links. Since link processing will

be done in the user ring, the process may interpret links in an/

manner it chooses. Why not let links contain relative pathnames,

offsets, or even arbitrary character strings? A link might even

(1) As we have mentioned earlier, if an undetectable link is
encountered while attempting to initiate a directory, the system
must treat that link as an undetectable, phoney directory.

-71-

Tvmmm^^rmmmnmmKzmmmß mmmmmmmm "*■■"«• ^1^ WIIIII|IIJUI^IJI..JII Ill^IP^^H^

specify a file resiJing in another computer system. The

important poi. t is that wnile the kernel may be the keeper of

links, it does not interpret them. Naturally, the restriction on

link depth, which was intended to keep ring zero from getting

into trouble, vanishes.

^ . 4.3 Internally Generated Pathnames

In a few cases, ring zero generates and uses pathnames

internally. These generated pathnames constitute the third

general class of uses of pathnames in ring zero. We will further

partition this class into those pathnames that are generated only

during system in. ♦■ialization and those pathnames that are

generated during normal system operation.

During the initialization of the Multics system, the

need arises to initiate on the order of one hundred or fewer

segments. The reason the system must initiate thes. segments is

of little interest to our thesis. We observe that since system

initialization is an infrequent operation (hopefully once a day

or less) and the number of pathnamds to be resolved is quite

small, we need not feel remorse at proposing a very inefficient

mechanism to resolve these oathnames. In fact, as the reader has

undoubtedly guessed, we propose that these pathnames be resolved

by cal 3 to the inefficient version of find_ that we described

earlier.

-72-

mmm^mmm^m^^mm mwm* •n.m,m it>iiu ,mm i mwrnmrnim^mmm********^^

In the case of pathnames generated by ring zero during

normal system operation, we cannot be quite so cavalier. Or can

we? In fact, we can. A careful examination of ring zero reveals

that ten is a reasonable upper bound on the number of generated

pathnames that must be resolved in ring zero in the life of any

given process.

In fact, these internally generated pathnames are so

restricted that we have no need to even call our inefficient

find_. Since they all are of tree depth at most three and all

components of these pathnames except possibly the last component

are constant for all time, we could expand the code of find, in

line in the programs that use these pathnames. For example, if a

program needed to initiate >pdd>my, then it would first initiate

the root. Then, given the segment number of the root, it would

initiate pdd. Finally, given the segment number of pdd, it would

initiate my.

H.H.H Error Conditions

The last and perhaps most troublesome class of

pathnames used in -ing zero are pathnames that are used to report

error conditions. There exist numerous instances in the system

where a procedure detects an inconsistency or error condition

associated with sone segment or directory. For instance, the

system may detect an unrecoverable error while reading the

contents of a segment. Another example would be the detection

-73-

JA ■ -

■»■" ' WS^WT^WWP^^^iiWBi^^P

that the doubly threaded list which chain3 the entries in a

directory together is misthreaded. In error conditions such as

these, the system writes a message into the system log explaining

the problem. This message often contains a pathname that was

generated f-'om the virtual address of the segment or directory ir.

which the error occured. While the exact algorithm for

generating a pathname from a virtual address is of little

interest to us, this algorithm did depend upon the reference name

manager's ability to map a directory segment number into a

pathname of the object it was bound to.

Since we have argued that ring zero mu^t not call the

outer ring name space manager, we must propose a new algorithm

for mapping a segment number into a pathname. Many schemes are

possible. However, since the error conditions we are talking

about may be presumed to be quite rare, we will suggest a very

simple, buu inefficient, algorithm. This algorithm relies on th*

fact that any virtual address may be mapped, by the known segment

table, into the virtual address of its directory entry. A name

for the segment can be found in the directory entry. This name

is the last component name in a valid pathname of the object. To

get the other components of a pathname of the object, we

recursively apply this technique to the victual address of the

directory entry which is, of course, within the parent directory.

-74-

LwL^MiUH

•^~ wmmm mmm*m wmmmm^mwy ~~~ —«r-

4.5 Summary of the Design

This chapter has presented a design that allows

directories to be initiated in all rings. As a consequence, the

need for the Multics security kernel to maintain reference names

has been eliminated. The key feature of this design is that the

security kernel maintains, for each process, the illusioi. that

any postulated directory exists unless the process has sufficient

access to prove otherwise. This permits the security kernel to

allow a process to initiate a directory to which it has no access

without disclosing the existence of that directory. The address

space manager interface presented in this design is summarized in

appendix C. Appendix D contains an example of the use of this

in :erface.

-75-

-—-—--

mmm^mmm^i^mi ■ i au mmftmrnm »«<•WP.IPI.IIPU.. i.uLuuvm .,ii ii.un^i^^n^^^m'OTmvR^^aipippipvi

Chapter V

New Non-kernel Functions

As a result of our design, the interface to ring zero

has been modified quite extensively. We have eliminated three

major functions thp.L were supported by the old ring zero:

reference name management, pathname resolution, and storage

system link indirection. If th^ non-kernel portion of the

Multics supervisor is to use tnese services or provide them to

the users of the system, then we must design modules capable of

providing these services that run outside of ring zero. We n^ve

already explained, to a degree which we hope is sufficient to

convince the reader, how the List function may be trivially

performed by outer ring modules. In this chapter we will discuss

the important issues involved in resolving pathnames in the outer

ring and designing an cuter ring reference name manager. in

addition, we will address ourselves briefly to the problem faced

by user programs that depend upon now obsolete ring zero

interfaces.

5•1 Reference Name Manager Design

We have seen that the Multics reference name manager

provides four primitive functions on name spaces. These

functions provide a process with the ability to: bind a name to

a segment number, unbind a name, determine the segment number

-76-

r
8

' -^Kmmm • • i ■ I« — I !■ IIIHMll

that a name is bound to, ani obtain a list of the names bound to

a s.-gment number. Actually, fchf Multics reference name manager

provides a larger set of functions. However, the additional

functions all can all be expressed in terms of the four

primitives we have described.

It is not our intention to actually design a reference

name manager. We trust that the reader will accept our assurance

that it can be done and that it is in fact straightforward. We

must, however, commeui on one consideration that the design of an

outer ring reference name manager must recognize. When the name

space manager resided in ring zero it was operating in an

environment in which it was guaranteed to run to completion once

invoked. An outer ring name space manager is not afforded this

luxury.

Executing in the outer ring environment, the reference

name manager may be stopped at any instant. This of little

consequence except when it is stopped by the Multics "^it-

mechanism, m this case, the system suspends the process«

current computation and thrn restarts the process. The proces.

may then reinvoke the reference name manager and at a later time

resume the suspended computation having potentially totally

rearranged the reference name manager's data base.

I
-77-

■MMMaMMM

I»——«— \4*mßm*mm*mi**~imm*mn*~~*' mmrmmm

Luckily the system provides a mechanism that allows a

process to inhibit or "mask" quit signals. By masking quits on

entrance to the reference name manager and unmasking quits upon

exit the problem can be eliminated. Ac'^ually, it is highly

unlikely that the entire computation performed by the reference

name manager need be masked. We should aesign the reference name

manager so that it has as small a "critical" section or sections

as possible. In other words, we should try to isolate the code

that might malfunction if it were not masked against quits '/e

can then mask and unmask quits only when we enter and exit a

critical section.

Before leaving the topic of name space management, we

should comment on one consequence of allowing processes tc

initiate directories directly. This ability allows a process to

use the reference name manager to bind an arbitrary name to a

directory. One immediately obvious use of this new facility is

to replace the current special purpose mechanism that identifies

a process' per ring working directory and search direct'.res

[01]. All we need to do is bind the appropriate name, i.e.

,,working_dir" or "search_dir_n,f to the correct directory segmer t

number.

-78-

 ■ mrm im«, umwmmmi iw ■ ■ u m i^j

5.2 Pathname Resolution

We have commented that reference names are per ring.

This prevents programs executing in one ring from causing

programs executing in another ring to malfunction by tampering

with shared reference names. As a result, ring four could bind

the name "sqrt" to one procedure and ring one could bind the same

name to an entirely different procedure. While this multiplicity

of name spaces per process is desirable for protection and

modular programming reasons, it partially defeats find_,s purpose

in using the reference name manager to bind pathnames to segment

numbers. Since each ring bai a different name space, associating

the pathname >a>b with segraer.t number 401 in one ring will not

help another ring resolve >?>D. The rasult is that many

redundant pathname resolutions will occur and many name spaces

will contain identical entries.

We suggest that find_ not use the reference nar.e

manager to associate pathnames with segment numbers. In fact, it

was never correct for it to have done so. A name space ju' t

associates an arbitrary name with a segment number. However,

pathnames are not Just arbitrary names. Consider, for instance,

what happens when we remove the name b from tne directory >a>b

and then add the name b to *he directory >a>c. The result of

this change in the environment is external to the reference nan.e

manager and yet it has invalidated a mapping the reference name

-79-

'■w o "" ■'~*~mmmmmmi*****!rm ni"1 i«. " IIVI ...iimMmmni i P i ii>^i«pii^^qi«PWKPM«iKH

manager was keeping. The pathname >a>b no longer refers to the

object that is bound to segment number 401, but the reference

name manager has no way of knowing chis.

There are potential acwantages to binding pathnames to

directories once per process, as is done in Multics system 2*.2.

Consider the problem of installing a new version of 3

multi-component subsystem, such as the Multics HL/I compiler,

while Multics is running. In Multics system 24.2 we could store

the components of the compiler in a single directory. To install

a new version of the compiler all wc would need to do is build

the new version in a brother directory of the current compiler.

When the new compiler is ready for installation all that would be

necessary is to exchange the names on the new and old compiler

directories. Processes that had already started to use the

compiler would remember the segment number of the old directory

as the compiler directory and would continue to use the old

compiler and satisfy new dynamic linkage fcults to components of

the compiler from the old directory. In thi; way a process

always gets a consistent copy of the compiler. A process that

had not yet used the compiler would initiate the directory

containing the new compiler when it a tempted to invoke the

compiler. It would then remember v.his new directory as the

compiler directory and satisfy all linkage faults for pieces of

the compiler from this directory.

-80-

"'■■w ■ ■■' II l ■■ I ' ü""'1 ' I'" "-<■« «"^

If a process does not "freeze" a directory sub-tree, as

is done in system 2M.2, when it initiates that directory, then it

becomes very difficult to do on line installations of

multi-component subsystems. A process could easily get half of

an old multi-component subsystem and half of a new version of

that subsystem when an online installation of the subsystem is

done. On the other hand, a process often wants to use the actual

hierarchy, not a "frozen" image of the hierarchy. Our design

allows a process to choose between these two alternatives by

supplyiing an appropriate /ersion of find_ in the outer rirife.

We suggest that the syater supplied find_ opt for

solving the "directory renaming problem" rather than the "online

installation problem". The easiest and most attractive approach

to f.olving the directory renaming problem is to not allow find_

to use a pathname, segment number associative memory. Instead,

find_ will always recurse to the root when resolving a pathname.

While this might seem unattractive for efficiency reasons, direct

measurement of the impact of such a scheme upon system

performance reveals that system tnroughput would only be degraded

by a small fraction of a percent. In addition, our proposed

address space manager will drastically reduce the number c:'

pathname resolutions that occur within the system. This

reduction in pathname resolutions should render the difl'erence

between find_,s having and not having a pathname associative

memory almost immeasurable. This slight performance degradation

-81-

m.MMpi. i n.^ nil iiiiiii uiiii.iiiii.ijiii ii i i m ■■miniiu. ii i i m^pnainniipv<^:>vi " ^ " n

seems a amall price to pay for the elimination of the directory

renaming problem outlined above.

5.3 Compatibility

The final topic we wish to discuss in this chapter is

that of compatibility. A basic responsibility of any corputin-

utility is to minimize the effect of internal changes upon its

user community. If a major change must be made in the interfaces

between user written programs and the system, or in the semantics

of these interfaces, then the system must support both the new

and old interfaces for a sufficiently long period of time to

allow users to convert their programs to use the new interfaces.

A suitable measure of this period of time would probably be

measured in months or even years, not hours, days, or weeks.

We have made substantial changes to the ring zero

interface and thus must address the compatibility issue.

Fortunately, it is quite simple to preserve compatibility without

keeping the old find_ and name and address spaoe managers. This

is possible for two reasons. First, we can si.nulate the old rincr

zero interface by interposing a ring four procedure between the

caller of an obsolete ring zero interface and our new ring zero

interface. Second, it is possible to interpose such simulation

procedures between the user and the new ring zero interfaces

without receding or even recompiling any user programs.

-82-

talMa^.. i_

w^mmmmmmmm MHiim \n i IVI . . u ii iw.u ■ immi^mmmmm'^mmim' < »mmn^iMmmuiin i mm

Consider how we would simulate the old interface to

initiate. The outer ring interposing procedure would call the

outer ring reference name manager to map the pathname directory

specifier of the old interface into the segment number required

by the new interface. It would then call the new initiation

primitive. If this returned a link, the outer ring interposing

procedure would start over again.

This simulation procedure would be difficult to

implement if it were not for the fact that Multics now has an

interposing procedure on all calls to ring zero. This procedure

is a ring four transfer vector that normally transfers the call

to the appropriate ring zero gate. (1) This transfer vector can

be modified so as to call an appropriate interposing interface

simulation procedure for the interfaces we have changed.

(1) This transfer vector, which was discussed In a previous
masters thesis by Jansen [J1] has not yet been installed in the
current Multics system.

-83-

i,iij. ■■.ippiiii«» WII^IIIUI inun jjiiii..m i 11 .MIi _ i nwamwf

Chapter VI

Implementation

We have coded a test implementation of the essential

features of our design. This test implementation, which is based

on Multics system 2U.2, was undertaken for four major reasons.

First, a working implementation of our ideas serves as an

existence proof of the basic claim of our thesis. Second, a

working implementation helps us demonstrate the practicality of

our design. Third, the actual task of implementing our design

helps insure that we have not neg^cted any important details in

our design. Finally, a test implementation of our design helps

us to quantify the impact of our design upon the system.

6.1 Flan

We have indicated that our new design requires an

extensive overhaul of ring zero. The pervasiveness of the

modifications necessary to ring zero is largely a result of the

removal of pathnames from ring zero. While the remova1 of

pathnames from ring zero ir- essential to our design, it is a time

consuming, straightforward, and intellectually unrewarding task.

Inst3ad of undertaking this drudgery, we have devised a

scheme that allows the essential ideas of our design to be

implemented while avoiding most of the uninteresting work. The

-84-

... iiiiinittilii

W—WHWIWI in ,

"'"-•"","-

implementation we v;ill describe does not affect any code outside

of ring zero, nor does it affect the syntax or semantics of the

interface to ring zero. As a result of this feature, our test

implementation provides the first ütep in an orderly transition

from the current Multics system to the system we have described.

The implementation we will describe could be immediately

installed in the standard Multics system without substantially

affecting users.

What we elected to do was to implement our new

initiation, termination, and name space management primitives

inside ring zero. We then reimplemented, inside ring zero, the

old initiation, termination, and name spac management primitives

using our new primitives. This scheme allowed us to concentrate

upon the key vssues of our design without getting bogged down in

the mechanics of converting thirty or more large complex programs

from using pathnames to not using pathnames.

The strength of this approach is that the modules in

ring zero may be slowly weaned away from using pathnames or now

obsolete interfaces. Also, by supplying gates to our new

primitives, users of Multics can start converting Iheir programs

to take advantage of the new ring zero interface. When ring zero

has been completely converted, all we need do is throw away the

code that implemented the old primitives in terms of the new

primitives and move the reference name manager out of ring zero.

-85-

MHMMIM^MMI

——— mmm mmmmmmmm

6.2 Impact on System Complexity

Reducing the complexity of a system certainly increases

its certifiability [D1, D2, D3, LI, N1, PI], In order to

substantiate the hypothesis that our design results in a system

that is more certifiable than Multics system 24.2, we will look

at two measures of the complexity of the security kernels of the

two systems. These measures are the difference in size of the

old r:ng zero and our new ring zero and the difference in the

number and complexity of gates into the old ring zero and our new

ring zero.

Appendix E summarizes the size comparison data between

the old ring zero and our now ring zero. As it reports, the

address space manager was reduced in size by seventy-seven per

cent. This corresponds to a two and a half per cent reduction in

the size of ring zero. In fact, the address space manager that

we designed was so small that we have presented it in appendix H

for the reader to peruse. This sizeable reduction in the size of

the address space manager is quite encouraging and substantiates

our claim that we have produced a more certifiable ring zero.

What is even more encouraging is that while this figure is in

itself substantial, it only represents a partial implementation.

Several modules in ring zero accept both pathnames and segment

numbers as storage system object specifiers. In a complete

implementation of our design many of these modules would only

-86-

f
1 -——-——— ■ ^^^—

wmmm ■^w.

1

!

accept segment numbers. This would allow the code that handled

the pathnames in these modules to be thrown out of ring zero,

further decreasing its complexity.

The old ring zero supports about two hundred gates.

Oir design clearly removes the necessity of having gates into

ring zero which call the reference name manager. II also removes

a wnole class of gates that allow an object to be specified by

pathname. Many gates into the old ring zero came in pairs. One

gate would specify the target object by segment number. The

other gate would specify the target object by pathname. With the

ability to initite directories in the outer rings, this

multiplicity of gates becomes unnecessary. As a result, only the

gates that take a segment number as object soecifier would be

retained in the ring zero of a comolete implementation of our

desjgn. When we add up the number of gates th?t a full

implementation of our design would remove from the current ring

zero interface, we find that we would remove about five per cent

of the gates. In addition to reducing the number of gates into

ring zero, we have significantly simplified the interface to over

fifty of the gates that must remain in ring r.cro. (1) This

reduction in interface complexity also lends credibility to our

claim that we have made ring zero, and hence Multics, more

certifiable.

(1) See appendix G.

87-

- - ..._

wm 1,1 '■•" ■

i
6. 'j Impact on System Performance

To help assess the impact of our design upon the

performance of the Multics system, we developed a small benchmark

that tests the speed and paging behavior of the most used svster.

functions that our design affected. This benchmark was run cr.

both Multics system ?4.2 and our test implementation. The

results of these runs indicated that the virtual cp^ time to

initiate and then terminate an object dropped from 11.002

milliseconds in the standard system to 10.226 milliseconds in our

test system, a reduction of eight per cent. (1) This is

espjcially gratifying since the test name space manager we

implemented „as not in the least optimized for running speed. In

addition, cur test implementation was unfairly penalized by

having to converse with our benchmark through a simulation of the

old interfaces.

We attribute this speed up to many factors; not the

least of which is the fact that we greatly simplified the

structure of the known segment table. We also make the somewhat

immodest claim that our initiation, termination, and reference

name management primitives were simply coded better than those in

system 2*4.2. But this is not su-pi'lsing; moat things are done

better the second time around. It should also be noted that the

(1) A description of our benchmark as well as a brief summary of
the performance data can be found in appendix F.

-88-

.« ■IM I ^»IWI.« "-^ MW^I^mapPM^-^^MIIIW mammmmmmmmmmfrm^'m

smaller and less complex a ■p<tl|lfl is, the easier it is to program

that module efficiently and correctly. Unless a programmer can

hold all of the relevent details and specifications of a progran-

in his head at one time, it is very difficult to perform global

optimizations or simplifications of the program.

Our working set performance data indicates that our

system referenced two more pages running the benchmark than

system 24.2. This did not come as much of a surprise. One of

these extrc' page faults resulted from splitting the code ..f the

reference name manager and address space manager apart and the

other resulted from splitting ap:rt their shared date base. We

anticipate that when programs are converted to use the new

interfaces directly the extra page fault that was caused by

splitting the code apart will be compensated for. We exoect that

since our code is smaller in total, by eliminating the simulation

code we will decrease the working set by a least a page. This

will make up for th extra page fault caused by splitting the

reference name manager and address space ma-ager apart. The

increase in working set due to splitting apart the known segment

table cannot in itself be avoided. However, this Increase in

working set is nly on the order of a half of a page and is

independent of the combined size of the new data bases.

-89-

nkMHMMtlMliMi

" ■ ' ^mmmmm^m^mm

We have not really put much effort into the performance

arguments above. We feel that the performance data which we have

reported above is not, in fact, a good measure of the performance

of a. full implementation of our design. We claim that there is a

hidden performance factor which will easily swamp out the

performance effects wc have been discussing. Fortunately, this

hidden performance factor is in our favor. The effect to which

we are alluding will not be seen immediately but will slowly

assort itself. This effect has to do with the gradual conversion

of major supervisor and user programs to use segment numbers as

directory specifiers. Since pathname resolution is fairly

expensive (even when find_ is given a pathname - segment number

associative memory), the use of segment numbers as directory

specifiers will save an average process a substantial amount of

computation.

-90-

.

IRIHIIUUIIIIUIIIIII« " » ' " ' mfmwmmmmmmmm

Chapter VII

Conclusion

I '

We have argued that reference name management need not

be suppoited by thj security kernel of a computing utility. In

particular, we have demonstrated a transformation on the Multics

system that removes reference name management from its security

kernel. Our lesign has further simplified the Multics security

kernel by allowing directories to be initiated outside of ring

zero, and removing the concept of a storage system link from ring

zero. In the process, we have repaired an inherent security flaw

in the current Multics design that allowed processes to detect

the existence of objects in the storage system hierarchy to which

they had no access. This flaw resulted from having insufficient

access control on links and from ring zero's failure to terminate

undetectable directories. Finally, we have provided a solution

to the problem of clearing find_,s pathname associative memory

when a directory is renamed.

^.e have used a technique in our redesign of the Multics

system that we feel deserves special mention. This technique

involves constructing a careful lie to maintain the security of a

piece of data. In our case, we constructed a security kernel

that lies about the existence of a directory until the caller
«

proves its right to know of the existence of the directory. This

lie, which was actually quite easy to maintain, prevents a

-91-

mmm _,

■■Ill IIIPI ■—~ «■■■rowna-fm

process from detecting directories that should be jndetectable bv

pretending that ail possible pathnames correspond to an existing

dir-witory unliss the process has sufficient access to the objoct

specified by ehe oathname to prove otherwise.

We have implemenLed and tested the key points of our

design. This implementation has shown that our design is both

simpler and more efficient than Multics 24.2. More details of

our design than were presentee In the body of the thesis may be

found In the appendices that follow. In particular, appendix |

presents the actual programs of the address soace manager

designed in this thesis.

In conclusion, we would like to note three observations

we made while designing a new aldress space manager for Multics.

First, our address space manager, which is far simpler than the

current Multics address space manager, also is more efficient

than the current address space manager. The complexity oT the

current address spacp manager cost Multics both space and

performance. (One is terpted to believe that, in general,

complexity added to improve performance is frequently

counterproductive.) Second, because Multics is an existing

system, une functionality and use patterns of the Multics address

space manager were thoroughly understood when we began our

research. A large part of the simplification achieved la the

direct result of insight extracted by ojs^rving the existing

-92-

m*iimmrTmm^Hm***^*^m*m^^*' •n ,«"1111 ■'■HI i mmmmmm******* ■ l'- wmm*.K

implementation of these mechanisms. Finally, we noticed an

impressive threshold effect. As our design progressed it got

simpler and simpler. a certain point, when our design was

simple enough so that all of the relevant details of the des'gn

could be considered simultaneously, our design underwent a

further drastic simplification. This simplification was only

discovered when the mechanism became simple enough and small

enough to be kept in the head of one designer all at one time.

-93-

———- ^'■" '
wm*~ II II mm» <i si

APPENDIX A

Structure of the Multics Known Segment Table

The main data base for the Multics system 21.2 ring

zero address and reference name manager is the Known Segment

Xable. The KST is a pt'-process, ring zero segment. Logically

it contains three items. First, it contains an array of KST

Entries. KSTEs are indexed by segment number and contain all

per-process information necessary for the proper care and feeding

of the segment or directory associated with the indexing segment

numbe . Second, it contains a hash coded maoping from the space

tf unique XDentifier's onto the space of segment numbers, or

equivalently the space of KSTEs. This mapping provides the means

of locating the KSTE of an already initiated segment should it

subsequently be initiated by a different name. Third, it

contains a hash coded mapping from the space of names onto the

space of segment numbers. This association is mainly of use to

the dynamic linking mechanism. The current contents of a KSTE

and their major usages are given in the following table.

-94-

 - —-

LPM uj||JHnnpn>nw^nwilli ai i li.^mm<i*^qmgmmm mM»m,«<Wmi L ,i . lu-w-i . I

!

KSTE Field

forward pointer,
backward pointer

unique identifier

.
name pointer

inferior count

parent segment number

entry offset

dirictcry switch

These pointers are used to chain
the KSTE onto a list of free KSTEs
when it is not in use.

The unique identifier of the
segment is used to validate UID
hash searches and to properly
identify the corresponding
directory entry after an on-line
salvage.

This pointer chains together d list
of the reference names associated
with this segment or directory.
Stored with each reference name is
the number of the ring in which the
narm '« ^nown.

The inferior count records the
number of inferiors of a directory
that are in the process' address
space. This information is useu to
prevent a directory from being
terminated while it has known sons.

This entry records the segment
number of this segment's parent.
It is used at segment fault time to
help locate this segment's
directory entry. It also is used
to translate segment numbers into
pathnames.

This entry, which records the
offset of this segment's directory
entry within its parent, is used in
conjuction with parent segment
number to locate tht segment's
directory entry.

This flag, which is set to indicate
that the segment implements a
directory object, is used to
specia] case access setting fcr
directories at segment fault tine.

-95-

i

mmimmmm p^^npm^jii pwini«|.MPMv«i^M^ mmn in

APPENDIX B

Structure of the Proposed Known Segment Table

Our redesigned KST has been simplified and contains only two

componentJ : a KSTE array, and a UID hash table. The contents of

each KSTE and their major uses are summarized below.

KSTE field Use

forward pointer,
backward pointer

unique identifier

inferior count

entry pointer

directory switch

rings

highest detectable ring

Used to thread KSTE onto free or
hash class list as required.

Unchanged (a phoney directory will
have a uid = 0).

Unchanged.

A pointer to the directory entry
for this segment.

Unchanged.

An eight bit field containing one
bit per ring. Whenever ring i has
this segment number initiated then
bit i of this field is on.

A number that specifies the highest
ring in which this process has
established its right to know of
the existence of this directory

-96-

 i .

r— m^m^mmm~~

APPENDIX C

Proposed Address Space Manager Interface

The proposed ring zero address space manager interface is as

follows.

initiate_ (dirsegno,ename »dirsw.link,segno,code)

i

dirsegno segment number of the parent (input)
ename entry name of target (input)
dirsw directory switch (input)
link link (output)
segno segment number of target (output)
code status code (output)

possible status code values:

error_table_$segknown segment already known to process
error_table_$invalidsegno parent is not a directory
error_table_$noinfc insufficient access to return any

information
error_table_$nrmkst no more room in known segment table
error_table_$no_entry entry does not exist
error_table_$wrong_type entry is of the wrong type
error_table_$link entry is a link

terminate_(3egno,code)

segno segment number to be terminated(input)
code see above

possible status code values:

error_table_$invalidsegno segment number is not bound to
an object

error_table_$infcnt_non_zero can't terminate due to
active inferiors

error_table_$known_in_other_rings can't terminate due to
segment number being used in other
rings

-97-

fkatti^MtMUMItHMM __|^MHgg y -^

mmgmmr ^**mmm> 9m^mm i^npimmmmmwr tin un .

APPENDIX D

Example

To help clarify the ideas presented in thir thesis,

let us consider the following scenario in which a process tries

to initiate the segment >a>b>c>d>e>f in ring four. We will

assume that directory e and segment f do not exist and that the

process has no access to a, b or d, and append permission to c in

rings zero through four. We have presented beiow a

representation of this path through the hierarchy along with the

process' access rights to each object in ring four.

"root"
i

<-- status
i

a
!
b
1

<--

<--

null

null

c
1
d

<--

<--

append

null

To simplify matters we will ignore the existence of the outer

ring reference name manager and we will assume that we are

operating in a virgin environment. What follows is how the outer

ring find_ would proceed in this case.

-98-

■w * mmmm*m* i^^^mnrnv-

i
step 0 call initiate_(0,"",1,link,segno_of_root,code)

ihe root directory will be initiated, its detectable
field in the KSTE will be set to four, and a status
code of zero will be returned. (all processts have
status permission to the root directory)

step 1

step 2

call
initiate_(segno_of_root,"a",1,1 ink,segno_of_a,code)

The directory will be initiated, its detectable field
in the K3TE will be set to four, and a status code of
zero will be returned.

11 initiate^segno^^a/'b" , 1 ,link ,segn j_of_b,code)

The directory will be initiated , its detectable field
in the KSTE will be set to zero, and the status code
noinfo will be returned.

step 3 11 initiate^segno^^b/'c", 1,link,segno_of_c,code)

The directory will be initiated, its detectable field
i''. the KSTE will be set to four, and a zero status code
will be returned. In addition this initiation
establishes the process' right to know of the existence
of superior directories at least in rings zero through
four. This is reflected, in this case, by setting the
detectable field in the KSTE of >a>b to four.

step H call initiate_(segno_of_c,Md",1,link,segno_of_d,code)

The directory d will be initiated, its detectable ^leld
in the KSTE will be set to four, and a zero status code
will b"> returned.

step 5 call initiate_(segno_of_d,we",1,link,segno_of_e,code)

The non existent directory e will be assigned a KSTE
which will be marked as phoney and the status code
noinfo will be returned.

step 6 call initiate_(segno_of_e,"f",0,link,segno_of_f,code)

No KSTE will be assigned and the status code noinfo
will be returned.

step 7 call terminate_(segno_of_e,code)

The segment number assigned to e will be released on
the grounds that e may not really exist.

-99-

■ - ■ ■

»w '■, ' m*mmmm*~mm*ßl*****'*mm*ww^m*^m
"■-, "

APPENDIX E

Size of Programs

In this appendix we summarize comparison data between

the size of the Multics system 2^4.2 security kernel and the size

of our proposed Multics security kernel. We have only induced

data for the major programs that were affected by our design. As

a basic measure of the size of a procedure we have chosen the

number of words of text in its Multics object code module. This

corresponds roughly to the number of machine instructions in the

module. We notice that in most cases the procedures in our

system are markedly smaller then their counterparts in system

2^.2. Our reduction of the security kernel by 33*45 words or

about two and a half per cent may not appear spectacular, but the

reduction in size of the address space manager is seventy-seven

per cent. This has substantially reduced the complexity of the

security kernel. The reason we can make this claim is that while

the reference name manager in system 2M.2 is not that large, it

is complex far out of proportion to its size.

-100-

wmm iimmmir^i'''^mmmm^mii^mmmmr^r^^mmmBmmitf>mKmmmmmtmm^^^mmn^w^i'^^mmmm^^m^^^^i^^mm ̂m

old orocedure size new orocedure

find_ 791 128 find_entry

makeknown 732 1614 makeknown_

kstsrch HHO 103 kstsrch

kst_raan »5 3« get_kstep

makeunkpown 10HU 123 terminate_

initialize.kst 667 82 iriitialize_kst

initiate 698 288 initiate_

k3t_entry_check 112 88 kste_info

84

86

kste

validate_segno

U529 1181

-101-

iiiKii j ■ HI i n xmtumi^miqimiitm^mmmmmmm IWIIPIIIIHII w*mm w^mm***^*m'*m W

APPENDIX F

Performance Data

■

In order to measure the change in overall performance

between our system and Multics system 2U.2, we developed a

special benchmark program. This benchmark was designed to

evaluate only the most commonly used features that we modified in

our design: segment initiation, reference name management, and

segment termination. Specifically, our benchmark called tie old

ring zero initiation interface (1) to initiate a segment and give

it a reference name. It then used the terminate by segment

number primitive of the old interface to terminate the segment

and unbind the reference name. This was repeated one hundred

times. The virtual cpu time in microseconds to complete the

benchmark was then divided by one hundred to obtain a normalized

performance timing datum. The total number of page faults for

the run was also recorded.

The benchmarks for botn systems were run on December

10, 197^ within ten minutes of each other on a dedicated

computer. The standard Multics system used was designated as

Multics system 24.2. Our test system was identical to system

2H.2 except as it implemented our design. Three runs were made

on each system. The first run served only to cause dynamic

linking to occur and to bring the pages that our benchmark

(1) The old ring zero interfaces were simulated in our system.

-102-

.- .—

1 m !«■ »ai-i i mmm^^

touches into primary memory. The second run, whicn took no page

faults, was used to obtain our timing data. (1) Multics system

24.2 averaged 11002 microseconds for each iteration of our

benchmark. Our test implementation was actually seven per cent

faster, taking 10226 microseconds per interation. The final run

was made after the contents of primary memory were flushed. This

run estiblished the size of the working set of our benchmark

since each page touched while running our benchmark produced a

missing page fault. The working set of our benchmark in Multics

24.2 was five pages. Our test implementation had a working set

of seven pages.

(1) Prior testing had shown that multiple runs of the benchmaiK,
under identical conditions, produced times within one hundredth
of one per cent of each other. As a result one timing run was
all that was required.

-103-

-.'«■wwvmii ii, I.IIMIII Mmwwmim mm^mwwmmmmm. ■ miii. .in

APPENDIX G

Ring Zero Interface Complexity Data

This appendix lists briefly the changes we have made

in the ring zero interface of Multics system ?H.2. We have

excluded from this appendix the changes we have made to the ring

zero address space manager interface as these changes have been

documented in appendix C.

Obsoleted Interfaces

hcs_$chname_file
hcs_$fs_get_path_name
hcs_$delentry_file
hcs_$fs_get_ref_name
hcs_$fs_get_3eg_ptr
hcs_$status__minf
hcs_$terminate_file
hcs_$terminate_name
hcs_$terminate_noname
hcs_$truncate_file
hcs_$set_bc

-10*-

•■•■"-'"■," —— rr^mm IPIW^I^^SP mmim

Interfaces Converted To Specifying Their Target Object

By Segment Number Rather Than

Bv Directory Pathname and Entry Name

hcs_$add_acl_entrie3
h c s_$ a d d_d i r_a cl_e n t r ie s
he3_$add_dir_iacl_entrios
hcs_$add_iacle_entrics>
hcs_$del_dir_tree
hcs_$delet e_a cl_e n t r i e s
hcs_$delete_dir_acl_entries
hes_$delete_dir_iacl_entries
hcs_$delete_iacle_entries
'ics_$get_author
hcs_$get ,,:^_aulhor
hes_$gec_dir_ring_brackets
hcs_$fJet_max_length
hcs_$get_ring_brackets
hcs_$get_safety_sw
hcs_$get_user_t.'ffmode
hcs_$list_acl
hcs_$list_dir_acl
hcs_$list_dir_iacl
hcs_$list_inacl
hcs_$quota_move
hcs_$replace_acl
hcs_$replace_dir_acl
hcs_$replace_dir_inacl
hcs_$replace_inacl
hcs_$set_copysw
hcs_$set_dir_ring_brackets
hcs_$set_max_length
hcs_$status_
hc5_$status_long
hphos_$add_acl_entries
hphcs_$ad d_d i r_a cl_entries
hphc3_$delete_acl_entr.1 es
hphcs_$delete_dir_acl_entries
hphcs_$replace_acl
hphcs_$replace_dir_acl
hphcs_$set_act
hphGs_$set_auth
hphcs_$set_bc_auth
hphcs_j:set_dates
hphcs_$set_dir_ring_brackets
hphcs_$set_ring_brackets
hphcs_$status_bjckup_info

-105-

-m ■"- W"" -pw—»

Interfaces Converted To Specifying Their Target Object

BY Segment Number Rather Than

Bv Directory Pathname

hcs_$append_brani;h
hc3_$append_branchx
hcs_$append_link
hcs_$quota,.get
hcs_$star_
hcs_$star_list_
hphcs_$quota_reload
hphcs_$quota_set
hphcs_$salvage_dir
hphcs_$star_no_acc_ck

-106-

'^Mptqnnma IP^pppp^wwiOT^ . iiiiiw.awMi^mm

APPENDIX H

The Address Space t^anager Programs

We have claimed that the address space manager we

designea is simple, small and easy to certify. To substantiate

this claim, we are including in this appendix the source cede of

our address space manager for the reader's perusal. These

programs differ from the actual programs that ran in our trial

Multics system only in a few minor details. (1)

We will divide this appendix into three sections. The

first section contains a declaration for the KST. This

declaration is used by programs that contain a "^include kst;"

statement. The second section contains the PL/I source programs

that constitute the address space manager. Finally, the third

section describes the calling sequence and functionality of

system modules called by the programs presented in section two.

The baseno and ptr PL/I builtin functions used in the

programs in this appendix are non-standard PL/I functions used in

Kultics to manipulate pointers. A Multics pointer may be viewed

as a pair o' integer values. The first component of a poisuer is

interpreted as a segment number by the Multics hardware. The

second component of a pointer is interpreted as a word offset

within tne segment specified by the first component. The baseno

(1) See appendix I.

-107-

WPWH^W"," Mill I ^mm^imm^^

builtin function constructs a pointer to the first word in a

segment given a segment number for that segment. The ptr builtin

function constructs a pointer from the segment number in its

firsc argument, which must be a pointer, and the integer offset

which is its second argument.

-108-

tHarnm*,-^ .

— — -
mmmrw ~^—m

v.
^v* •

+J ^
*> /) •
WJU
M c

>. 2
>a3 o

dQ c
•o J^

T3 W
(DA
A*4 a
••H ".,
t, o «i
o n C^v

^ n D N 0)« >
• va \ • B«M

»
■o • >v

C (~ ■^» ■ 0) c ü
O t- 0) B • n n-H.c B

■H «ja o L m L. O B ^
•»-■'Ä B •v ■H 1. 0) i to «J o > •
(0 E 3 V « •u 4)4^ •H (U-H o •
t> 3 C • iT3 ■u c It J=^4 J L
R) C S^ L C-H o ♦Jia eo *> >. 0)

rH *i t- ffl •H Q « c b H

\ Ü4J C ■ •1 H aa L S2*J O)-^ 0) *> v^

• 0) C 0) r-t c a a- c o a* R C ■H

It £1 1 i r-t O •<•: a) >> bO 4) «I
•1 m « ^-t 0) B X:*J<J n 0) B
c j> o IU t. n> » a) »J n L, 0) I a) ai n«-> «* >> It c: T3 >rH •H ■n

k ■on n £ t- •o C CXI C -c •H
(0 .«J-H « L ♦* T3 t. 4-> •H4J O o

0) a>*j eor-i ■ ■ c (. (0 c 00 *JT3-H o 0)
n C CO ll) x: 4-' 0) 55 (V W tt) O 0) L *J 3

vs: v a 1 tiiJZ 0) (0 0) tT
*i

CO O-H L
-n ■H f- i. o C bOt. 3<« t. •H

n H o n o a) 1> ■r-4-rH -H c c ■p d
* s^^-t^o-. 9 a r^ <«£(n cc-a 3-H a 3

• • • • • • • * • • ■ - • • * * * *

r-t bC 4> , i-(

O Q) 4J a
c n, - 'M •
r-1 •o -a^ r-t • 4J 4) (U Ü
*i CO C C 4) » c
i J* bC bOJ«: •o •H
^

.-t r-lrH
4)
C •» *i

i

c to a)
•o C C-^
■C 3 3 b0

•H
r-(

J*
9* ■o

n

.T 4) m ^-N '—t 4) • «> i

i •w -^ -^ eo t- c •o
• O -CO-C *^s *— • c bO 4) i

•O »c. -'-»'- bO a. ^—^ ^^ •H 1-t C
M 4) C-^ ^t>-^.^» i en it rH bO I

-J m —(X3 eg £ *-■' c S,^' a) •>-)
i-t ni.o *J.-*J.. « ■H PI •^-v-O c ■H w
CL. .3 -O -rH -H bo * » X3 --»c. -^in 4) 3 cd _) • •' tj 4) JO "Xl 4) ^~* ^^ • aOH -^x M
W *J t 4> X Off) 00^^ T3 ^XS —' -H ^-s ^-% Cb
a X 4) X -H ~-«^^ J ■a »-00 4) 4JIM L. vX)
=> 4) C-H^JJ o. 0.0 • •■ <u X J->T3-4J-H ♦J m Ul
■J *&*> mGsz&r-i L m *_* •H •H 1> HX)*-) a s^ Q
D *» ■H bO-H ff} w *> <a *J <w X» XX) C =5
Z bC •-•«)<.••-• '«> • o. xs •H4J •H •O 3 a *J _]
»—* 4) m <u n lac o.>. XS-H o Ml« 3 (Ü O >. »i O

I, wx: a)<" pu L. Q. 4) X3 c bO m in o E O i'.
z 1 4j 3 b04)-'T3-—*> 41 •»-> a bO C t- U 3<M *J M
HH 4J W O-H t. H C *> 0) <-> a. 4) ■HTJ H C C rj T3
o w ^^-(x:<wm3co4) «0 Ü X3 CO t-x: n 3H H •H Q
u J»i M f\J £ 00 •-(\jfNj(\j c\j rvj •■ >—<\j rvj f\i (M (\J t\J CJ f\. Ovi

^-4 i-H r-t rH
• o g Ü a • ^ T3 •a ■c n ^

• 109-

r ■■ - —"- ■ ^ |H|ppM|imMM>W«P^-^

1
C •••
•ri «—» B ^ E ♦* -^
•H E ■H

> *>*
1

w

«J
i3 s

•o >. ♦J
H A c
mt T3 OJ
3 V •

XS •oxi \
o X) u *
*i >—
c U 0) L
0 e0T3 -J

•H 0) V
«j •o t- a
«0 0)
M t-n »

•H ci e ^-^
H n D *_>
(0 e c tf)

■H "■ 3 •H
4J'-^ cu •-H
•^ bC c
C V t-> V ft}
«4 CD Sä tl
n be ■ 0) u-t
n-H bo« •
(ux: S » •I
a m*j *"* « •-
o • •0 ^ J^-H
t- to J 0) ^
D.4) njc >— •• n ■ <i) tc ^'^ •-t.
tc* »■H c u 00-O O
c o OJ3 •H*J 4)T3 C

■H^-l !-• n o. • «» n m bo
U-- 1 60 — x:^«
3 | ■o • ..a>x) •• bo n

■0 4J 1 0) u tome a •w c •
• •• n | >■. a)£oe .C-H^ ^^ ■o^ | •H a n Me o «^•H
ÖC v 1 *-iw »•H S o-o^-
<D -1 0» *^N ox: it 4J (TJ
ff) .H N -^t^ -N>> iH II 0) >. • •»
f^ «H t^«- H-" u ii *> MC t. *J
to Or-* 9 ii IOX: OJX:*-' n

•H m v^ -c bO^H W (0-U c <:
rr «OH C too boai^H (0 3 a»

•H*.' c-< 0) a> in |x: o^ • V » ■i .HZ3 «♦J nx: « •H^-HJ N
t£ 4J C A £ X » bC(UT3 « «0 •H ■ «H •o hC(U O-H C-W II C* M

•• (0 J* ■O 0) •H . < c:-— 3 (0
4J » H aj x x: c Ml • • • • f-l ••~H
n o (U^H XH «■ *i 4J 4-> J *J "O+J
^r* N (0 ■H^H 1!^ n n n n n o C-H

h- •^ Ü «i MT ^ ^^^j<-o (U c
0) fd 11 u n •rH
N Ü «J •• bOOJ (0 <> V

■H O •^tCiJ 0) w 2 t- ■o TD
r-t C *JO s^ O.C 3 C
n a. ■H< rH*J r-t 0)
•H cw O-H ^tf Ü
•1 •H3 ^tx: C
•H rH •H
C • N O
•H ^v « •o »•

-no-

 - ■■■

If

iil«>q«pnainuiiuiiuifi«w .JW^^IPWWIPPW^PWIPBP«»^»^-^ ■ ""■"■"■l nPW«Pi.WIIJ*i.l ■■■ 'iFi! ^"V■■■■•."- mjimmr*^**

o
V

a *

10 ■
•o m ■
a> a» 0)
o.« c t Ü
o> a)T3 O C • * m t.-CT3

4-^

C O

41
t ai'-H-o« 3 O TO
V .a (O-rt m Q,-, 3| 0 O^H n .- B««
o. O «3 0)'- wi 3 c o | 1 4-' co > o a> — a »«- ■ *-■ CO c o c >>

4-)-rH « t, O ^-i
fi--^

t- 4-' • O -H O.Ü t-^ ^-v ■
o a; to o 4-* >>X1 J t c •^i a» *-' 4) • 4-- (U 3 >,C TO
M .0 4-' cox: o o*-- O. ■O TO4-' 3 O
0) O <D 0) *-' c 4/ re *-■• TO C U
*. ■O 3 HI t.-r4 3 4) C 4.- I

c -rt a a a •^H*^—~ O t. t, c «J
od (0 ^-(0) *-' ' J ■0•H4-, ^ ■-»3 4) C 4) •

«3 t- c C 3 «*J E 4) >sx: ^ » Ul > •♦ • 4---H Q. 4-, 4' U E t-4-< f-
J»: » <u j«: c c i — L 4) t> o
c o >SX;*J c 4) O-^H ■ >. to 4J4--t^ ^^

■H ^^l-l•^-, ÜH-t t.4J — E UO 4-- n o o
•-t, ^H C O)»-! « TO O+J c to 4) c I (0 Oti-i-^1

"^
*.■, *-- t, oo •H

<0 Mi3 ■ ^^ Ü 10 o X C-H tH XI
■CO) OS t« O O «1-1 4.^ 4J CO C 4) VT3

•■ OrH • n O*J*> O 3 t. 4).* t. 4-> T3 » •H D C (U t. Ü o a f-l O 4-> TO TO U 0) m £•0 OX:-H t, 4) 4J u*? ■a o c o O. 0) .2 c J O -H *-■' T3 4) C t. — 4> 3 TO-H C 4Jf-,
•H i«i Xi.H-H4->£l O L ^T3 OX3

3H C O
c

■o, <u no.« EOT) 3 e>- O-P E to
I j-» to (u aj tii 3 Q.3 N- c O 4; HIH 0^

<0
S^ cr ro

C c n) 4-' C 4) 4) O O r-l TO CO 4-, o
•H 3 -D 4J-H t-n >.H 0) -^ c

■1 f- KB *.' « O 4J O C Ü TO C UJ P" «, 1 O Cr-I (U C >Vr1 — CO 4> -H 4; >. •^4-- C w a> » 1 t. ••<Hr-t 4) t- V B<" t, t. to C TO CO^
Q; 0) (0 ► E4-' SOU E to Wn 04-> H 1 4)4.- +J air\

c N Ü *•' 3 O »^C t. C bt3 •• V 9 i B 1 C •H Tn
•• m 0 4-> C 4) ^^ H 4)*., to CO CO 4) >-. 1 TO 1

L a i
^ aj^—

U)Ci.(D o ttl m CH to ni 4> CO
M C to ■<-) (0 4) CM 4> 4-> 3 1 -H C 1 V) O I '— hOt») »c

•H Ä CO 1 O 1 1 10 H 1 1 c C 1 O C C O-H • t- to o o a 1 fc-. | | TO 1 1 1 1 V Ui 1 4> ti-cH-<-t C-O
o
P

10 4-' —,
41 0) 0) 1

1 4)-'-t 1 1 1 > 1 1
C 1 1 >,

4) S ^

4i i a.
I to >. ■HUU <a'x)

b £ U^-O (1) tW^ 1 1 -o t-*J O « TO CO 4)
0) *-' T3 ••-• 0) 4-' r- c 4) ct^ T3 O O 4^ 4-% 1 -H-H

«HO t/l
-1 > > a.x

n X) '-' rt) "- CO-H»- — O C^H to C •~* ft 5 M (0 (Ui-H-r-t ^-^ 1 trs O^d C* 4) ^d TO TO C
C >*> O

m .^-^ -*-.
—4 4." «J 4-'' C 1 1 AH B

to at o C o
^- »* 00 O

<T! « (0 O-'-' H | 1 m c^- •H C O L,
rH-H C 5

cov-vo c-^ ^ |n-» c ■O 1 >-H C 3 H C C C t- L. «- UJ4;
4) (0 4-" CO ^ ^^ XJ—I 4-- ***>.¥) ¥>«JV)W*) TO-H tv- 4)-0

Ü 4-" 4)-"^ T3« *^ ̂ i3 ") ATS TO « O
0 ffl O C >-< 4>^^ *- • -o *.> OJ 4) 4) 4J Q) Oi OJ O) O jC L. JO
t. •^ o—• H X t.^ — 4>,0 (0,--(_|,_l,H,-),-H,-l.-t •"Ü TO TO
O. 4-, t, C <0 .H TO 4-' 1- X 4; £> £> £l £> £3 J2 £3 £) 4) 3 £ (Q

•^i QO J O
c *-' a

<i-. JC -H TO H X 4>TOTOTOTOTOTOTOTO Hi0©. • • Ü£l£C«^ rH ♦J 4.N ^ ♦-' 4Ji4-\4Ji*J
I •»-< to c •* o O <- -Olli C -H -r-t ^ C 41

4).T3rH C UJ-O J | H s o
TO « TOrH W O

il' *>^ÜJ C 4> 3 O -H Lb LI. WtftmU ** A, or: 4)ü
4J TO L

v c «
C U1T3

tooooooooo
m 1 4-' t»)Xt to t. t- t. t. t. l_ t. C
fi 1 C -H (0 M W CH .-(OJ O ouuut* t. L £_ t.
V 1 .-I t- B => a.wr-4 n v 0.4) 4) 4) 4J 4) 4J 4) dJ
•H H
c * O
fH V ■o

X3
B
o

4J --, ^\i

C--.W-
■HÄ >—*>

e ♦.' •<-•••
Ü'-'H*^ C^
•HE c-H•»-"m
4J^-H C --
CO -HO
4J 4J Ü -ri*!
CO-H-H 04JTH

C V -rH TO C
73 -H TO ^ 4-> fH
t) 4^ TO 10
C Ü I04J Ü

-K'H C0--N-r-l
•0^,4J'-^ t^ 4J
4)rH TOt-^"- TO

» C TO4J»-t^'w4.'
T3 -bCi CO—»- CO
4>^^.H'-^ ■— C
CtrHvO^C •H'-s
or- mr^f-Ti cxst--
iH Ä i3T3v-

TO C'M4-'4J-0 V
•rt CO-rt -H 41 T5 x t-

^^XJ—aZ3 X 4>-HT4
vO -H X *-• -C)
CTO t-TJ 4> <>-•<-(
»— 41 TO-Hr-H t>-. >,T3

XX: 3Ä >> t, 4)
-4-) -H U kH t. 4.- O X

L ^H t^ >, CO V C *.> -rt
*' X) 4>4)I0C4;U(^
O. 4)EC4)4)E4I

•O UTO O O Ib., t..*
an >.ccoo4)r4c
a(3 4j a> Q.« c co-o^i

in » en
T3 v—

4)
C c • ta> f-t i •iH X)

*> TO ■D

c 0)

"l
X

o on k
c N^

^ •»-% ^
4> •H «^
iH X) ^
a
in » A9

^| t-
•H
X5

t,
o ^ M

E ^^v

u - c N
4».* ^H •*

C XI ^«
•*r4

4-" i-l ■c c
tov» c •^d

-* 1 M -^x.

E^ b
ha 4- -C

CJ3 a 4.
«».TO • *- X

k- •o 1-*

4> 4» tot«
^H t. C c
xi a bl c •
TO E fH 3—«
4-' t- ^-(4-'«-

4; TO 4;w
t. E
o •■ *«-* 4.■
u t- OJ '-^tH
t-rH m ^Xi
ai-o N_ r- TO • * r— •
-1v ^-v L ^•D

C Olf>
5 cm

TO i
x: c c

0-*>w B •-< t»
c ^0^(
j«: tu C ■»-^. •H
fc>-H •-I 41^^^-N ■D TO
4)X)X2 t^ ir> QJ
to TO •• m X-^
♦»4-" a —-w ■HvC

4. t«m
41 t- X c c ̂ ^_-
-t O ■*-* ■^l-r4
X) t-<« AX) >V4-
TO K. U-r*
4-\4) *i ■o-o *-• £>

X 4) 4> c
t. - i X X 4) ►
a o T-IMH L
C c ^ t«t^ 4-^*-'
b W« ■«s_^ x a
Oi 4) ex • (U —

to >, >.U
-T3■^-, t- c <u >.

O-rt J ♦.%-H to L.
41 fH St 34J
C TO c c c

■H > a TO ■r-, 0)
O C u O >♦»
C-rt :c fci O*J

C'-' C X
•H.* t, c

4» 4/ ■ l_ 41
^H^-i r-(x: to 1
XiXJXl o U C
TO TO TO C TO C J ■ a

•*.**. ♦-'. TOC 4.' C t»
t- O rc z ;".

t. L. L XJ ■C Jt J(
O O O I •
t. E L. *■• L. —• it I
t- t. L.

fc^
.■^ kti ■o

d) at 0) > E 3
^

Ü
l-t ^ C
a Ü t-»

■D "O »•

-111-

r "™^«— mimiwm LIII«IMIII»IW MUMI «■«^PW^WWI*"«'111 ■ ! ■ ■■p. mi ..I] l««!

I

*■'

i)

•s c
• n •»

x: ^
n o • » t *5 #-*
c-»-- 0) ♦J
0» c H c
E ffl • » • •> £ 5 3 Ü *^v ^-v •H
U O 0) ■ o »
L. t, c j n c P
ro «J ■ V *k E

i-H 01 a o ■H

^i-H n • •. a 0) T5 •»>
3 ffl T3 *-s. •^ (0 ^-1 « ^N

Q.O •tH 0) M < X a>
c ^H •» r-l c a) •« 'S

■M t. m—> £ •H P •», i
3 > t- •fH r-l T3 ^-* ••. 0

> O C-rH | ■H t- K a f-fC ■ ■ 3. c •■

o o ■*t to ■ a E 0 a 01
c> «

0) o
i E

9) O*J x>
« • H C n • C •- "—' • *> SJ ■^ ^v» XI-Mr < TJ O^ ^^ 2 ra •H x: o> 0) ^ •rH C P

4-' 01 »•» 3 o*-< ■o c •O O V
H T3-^ M o •H • I o

C£l •^ O ■ ~H Ü. r-i 0
o w 3«« ■ ^to **. «k" ra
t.*.' c a. O «0 c 0) ^
t. 1 >-^ k c a> E <U aoi o> *
II c 01 o d taCU 3 l-t >M-II-I 0
w O c c 0) o 4J X» 4--£li3 c

[l O'M ■ « CO 0) « ^^ «O-H 5° c t- £ 0) m L *-\ 4^.00 o>
T3 o; a-u 1 ^.^ •». — « ■

MOW •»^^ iH t. u a>
—~ o -i3 c u-a v l-l 0 3. 0 0 ^
O \<D ^fl) 0) *-'-HTJ ID E 'i u 0 3
C C'T» O-P >,a30 O E t- u «j f
Wit. o c ♦ o U, 0) o 0) •H OJ E
0) 3 O B«. o<~ o n — c ^^ ■o^- - S «O*.- 0) o c c 4.^« D. 0) X)
Q.0) C CO t- *VH on v a) JC 0) •« 0>-H

>- t- t. Q.L. J o 0)^-v--O +J ■0 •O 3 »
3 ^- 0) n c L. O • »0 ^O •0 • •■

0>^-l*-- ^ D^». •HZZ o, >. M v 4! 0.,r ■H ^^. Ml

I0<-I 0) L — "^^c1 E c c |a Ml 3 t> L.
3 « l- *-> 0) <u fl ■rH C o> c 0> ^—v •D 0>
C O o.-o O-H II t. c rH t. B t,w 0) •« O i-i
•r* i-t 0) o t«i3 < rH^H 3 ^ 3 W,3 iH a O »H
V» CrHTJ m o C (0 r-liH*J

o^
II ^ O^Z X « w (0

o a> (O-H m | •H*J a) ffl m 0) 0) OT£^ •H **—• O
ex: o 3 i3C ao a L C^H ^ t. to ^ ..0)
•. *■ | ^ L £ U >. c II n •D OX) •-•- O ■-
0) c >, 3 Ü o ■^ C i)-l II II •HrH i-l .H 0) 0) "P c 0 -^- .-*> c

• » W-« 0) O Z*-' C L. 3 0) CO^-I • T-ti-H OJf-lr-l o tcu. ojin o) | L
o I-JC c ^£ « t, ntwx:^ « tu tu a im an) m o we- c 0) •uo^r' C 3
c .- ..0) i.' o t. aj t- -H v ai o a-aTJ <o o >,o o (0 •rt^- c <n c o^- 0 t- •-4-s

WJ 3 0) 4-> ^H c X H >>>. *i H Jrf t_ 0 0 3 a> 01
OJ CO F .TJ^H 3 a. iHi-l III T3 C V 4J4J c ..- C 0) • nv a> II 3 w C *.-T3 t~ • at

n u (013 3 « JPH^ *>' 9) m Oi O <D to ■0 •HJÄ ♦.' -H 11 0) 0

(8

CH C (. II to ro aj 0) a»"*- c r-i
Srt3-H4J 0)

ot«twx: C<"X:rH •H S^g O fl> ÜX5 t- O.•• 4)
fl)iH ^H t. o o ü-H-H4-> 0> -H *-■• 0) 3 C t- O 0) It. •»

In) II X)T3 <H o ono) t0 LTJ-O O C 0> to
(ö m > .-•■a C J »HOC a» • •> «t v^r-lr-t 0)>-i ä • 0 «> E H ■H

n O.0J • 0/ n • •»H 0) I •0 a £nH Wi-l •- X O 3>-l 4J
n II II 0) 4-' ttj<i-ix:^H o m<«£ H c 0) •MJ-H (0 a)Z"H 04jra •H

o ♦J CO+J-H^ ^"O 0-H*J 0) 0) ^ t.-HtoonjobdQJt^-nlWiaJO, c
c 3 oj o.n*c c 4-' m t0 •« "J •H
w. to i^^ ^ C 0) •-0 0. 0> 0 OJ 0
St- (U I •0 0 ■D Ü ■O O -O T3 4-' •a
n-H C (T. Cw t« (k-, jC H C t. Q^H Ü c £ c J c
axj 0) ^ -H -H •H.P 0) * ao» 3 « QJ c ci a> c

| j
0)

• •
ZrH 4J»-» *>

^
O i) O 01
O t.T3 t.

.

-112-

- - ■- — — -

-«i«ii. J "W*Ji upppBiFWWPBPJliJfiniiiii i i. Ui^niiiiiaili . lliWBlill Jl

r

^

4!

C

n
n
v
o
o
(0

o

&
a>
n

E

L

i
a
4'

T
c c>
3 O
o u
c u

i

00
c

o
Ü

CO

M
t- 3

O 0) U
O^Jf OJTJ
- *-> X 0)
c ^ L. a< <o

bC<« CO (0
-^•H -^ a.

n M*J «

•H «0 • C
TD t0T3 0) 0)

a) a)^-t B
>. o £ -H 3 n a)

JQ o n an 'jt u c
L.-H » t> L. O

T3 Q*-t (0 3 «

•* 9) 10 0)4J 0) ■
*- £ *JtH « Ü O
■^ 4J 0)«^. -C O C
U 0) • '-i 4-' t, bC

0.(0 C O Qi (0
«x: a> B t- öC'
^•U 0) 3 C '

.a a) n-tH ^
>.eo J3 t. CO

O BT3+Ji3 t.-H
J-> 3 n) O QJTD
o m a) c o-fc>
a) n (. -tJ 3 •
t. «Jr-trH CO

•.-• (Qr-I 10 -H
•O QJ H t. O 3

i-H CO > 0)*^
U 3 (0 rH >>
o-a£ co<-i a> L,

O -fJ n)r-l4J
4J B TJ rJ O i3 C
c a> a) -HO)
0) (O-r, B CO CO
B-H(M 3 4J co -
bcsz ••H W>H a» a
aif- a t. o a)
co a) <o m o»—

• n. a) n)
rO <D 0) ^ L.

U 3-H4J C
n n)4J Q.3 o 3
Q.Q.C c crc o
gco O>TH a c

B £- 0).*
n don t, a)

in a>4-> c n)j^
c v n H o m
St. -H IB
0 -a a» »-'v c
c-o.cn) Q.»^-t
.^ fl)*.'x: E O^H
a> *-• 3 c «
^ oo v n ^ c>
'■O1 «-* n n t)
B u a] a» njj* ••

a> -t-t B « UJ
^.•-<4J 3 00 BO

1 rH -^ co -H •»:
I (0 c coc oco

4J
3
a
c

0) w

o
0)

JO
O

!

s
E
m
a
co

*J-H
3
Q.L.
^) O
3

4)

a> o

0) A 0)
c^ oc

3 0)
<« BJ o

—> O C4J4J

3 c»- o n
0.0) 4-> n
C-H >, 0)

■H^ t,T3 Ü
^T-t O C O'-^

4J4J 3 n)4->
£ C U Q 3
o 4» oj n « &
en t. (fl^j
nj-H-H t,c 3
t, T3 0) O
no) x3 nw

3 a) B n
(0 CT 3 4) 4)

• -H CO C ÜT3
*> C-H O o
0 3 4J L, Ü
0) *-' C Q.

•<-) I Ü 4) «0
XJ I 4) Bt-i 3
O I •OWMJJ

xia) a)
4>'0 O C0*J+J

0) CO
(0

I
I I

-C 4)
^ c<«

O rl
4Ji-l*J

(fl 4>--» I

con 1 cww

X)—-o
I w 4) fti-Q
I TJ-U K^H 4)
I -H -^ HH .Q X

3 X} 4^ 'H -H
t. j nt*
•1 >»S O 00
O.L. 00 C 41 4)

*> t- WJO-O
Q. C .H 4> Ü O
4) 4J-0 «0 (0 O

.

CO

•o *

•H »XI
00 Ci-f^-
C -H a] u "o
t. JD 4-> 4)
3 '-ax
iJ-OVO -H
4> 4)00 -«-1
t, X^ t-^

•H *>

JO *i
>.>^- >.c

C C I. C^>
4) 4)4^ 4) X

C 4)
4-> ^ 41 4->
XX XV
1) 4)*-! 4) >

X L
-> a 4) c v
i) 4) -H n
t*l.i-> .C1» 4)

>-tJ^ t, an»
4) I CO 4) 4)

4) 4> 00C CO
rH tl0^*J^

•o

c
•H
4J

3

t,
♦J
co

3
CO

3
C

T3
4)
X

o
c
4)
(/)
2

■o

4J
CO

■o
3

■-•
o
c

-113-

J

r 111 ' " wm m*mm PMRRM^nvwi '»'Mi III

I
A)

o

E

I
!

i

0)
•u
(0
Ü
o

■
it
5 I
* •»
"S o c

n
m
m
i-i
v
X'

(0
x:
o
c

UJ

CO

•o
to
<v
u
c

•p
c
3
o
o
k
o

■H

(>-•
c

4J
c
0)
u
m a

c
0)
e
tu

o
c

UJ

CO

i

i
tn
0)
a
o
eg

c
3
o c
bt
'•
0)
m

il

a, Dr^
60- 3
«» C

IDOH
> «-<
a» n

n (u o o
ll^p-O o

i
WM.* C

u
Ü
L
I-
|
il

■
-T3

o
c
tc
V
V)

I • ■
n
it

+
4->
C
3
O

, -Ü

* t—H

■
-*>

OJK
0)

I
o
c o.
<D 0)

nj m
&* •^ a
■o II ■
x*-

•H C
«i- 3
w O

D
QA->
a> c
♦JTH
n •

ij n
"• (UJK
- bO

A
H II I

o •
•■.

a CO
E c o
ft
E

S K
O 3
c I
X <^
tn O ■

L • ••
0) •o >-*»
*> £ ^^»
n t-
■>: 0)

j«; «J •>
L. T3 ^^N

td a a
s 3 I • • *>

>s ■V c

o I
Mi
0)

■D 3 O.O.
(DC 0) 0)
0) V>4->
t. ii •-n n

4-- T? Q-Q.
Q.

-.(DC
r-l 0) -o
RIIMX: C
C) •< I1 V

»•-
no
E
•H II
•o
II C

3 Ö
n o

■M c
■O-H

-0) 0)
4J4-J
n to

a3!
a> >»

L
11 *J

c
0.01
>.
t II
♦J
c-o
a)'H

0) 0)
4J4J
n m
MM

•- 4)

W n

T3 Of)

0) <u

* bü
-0 C
bC -H
C I-

E
• a» a>

(Ui-t

^ «0 3

0) o

*> Ü
-en « c
ir> 0)
: 3<n -:
IMP

O.
iH 0)
3*>
c n
.i"l

b0 0)
C CXbC

L L M

II C U,
0) 0»

L. • •P
T3 o> n

• n
0) ^ c
jj 0)
o)6-.x:

c o
t, c
3^

T3*J 0)

0> Li
e

-im-

—--■ wmäi

■ '-'■•^W ■i-U'^WH"1«."

K

I

c
D
o-o

•o xs (u a)
CO -HJC

X) (O-H
en 3 c c
3 ra v a> 0)

x:x:-i-) OJ-;
O 4J'H «4-
•PU o

I- ex: « c c
n w a> o <o -H

O 4) U OX3
ox: n ö o-o
L.4J too a a>
a c *-- 4-- J»:

^-•■H "O o t-
rt I-H t, v a> c m

O > E
n • u <u t* o
»■o a)-^><i>T3 >>
o csz£) n i-t
^ 34J o Q> n 0)
rn o o t- c t.
mx> a> o a)

>-iZ (.HE
x: nx3^> 04->
o (0 ■-i «

•<-t » o> e (UTJ-H •
x: n o ai c bo
34-^ 3 U (-. OU C

ft WliM Of- •H
o c to t.
IUX:-HT7 0) 01^
0) r< (Ux: (0 c
ts-H*J*J4->(Da;0

x: o o X:X:-H
bOS C 0) 04->t-*J
C C4J O'--
•H o n c <« • QJ OJ
t-*->-H OTJM-O-U-O

rj 0) V O O
O-iJ U CO c •*> t, o
4-' o aj -H t, 4-> a Q.
C OJXiTJ 3 C 0)
ffOB ■•-> 0) C « O

X> 3 >><!> B C* C
OJ O C^-t t, 3 O t- bü
4J >-) bOO 0) 4)
(0 <D 4-< ro tn t- COrH (0
bCLC C O-W (Tl-H^l-—

0) -rt "O (0
E CO C-C Ü |
bf >,a) y 4J a)

4JOvx:x>4Joa>*''
L.ina.B-HCx:«)

3 > 4J C
•H a> <o c co co -H

t, x: H H c E
ID*.' 4JT3 •<-! C

VX) t. C 0) u v
4J ET3 0) <D > <■ ^*J
n)3cnat.*jco
C C CO B bOtl) B 3r-t
•H 3 0) n 3 r-t
B^coccovccn)
L C L, t. -HO
<t) 0) 04J a> 4->
♦JH-Hc:x:a)ct,»«

b0L.a)4^x:i.<a}U
A 0) cu a *J E wo

i n^-i btra boc<c
i c a) c >>a) oco
I (0-H«nJjOCOr-IO

4->
a;
-C B

COtH

n
c «

I
CO

(I
x:

*}
<« 3
O Q.

4)
L, 3
0) O
X>w
B
3 (U
c-o

O
4-> O
c
<D u

CO 9)

I I

I I

I I

t^in

c
•H C
JOH

XI
T3

N 0)
•H X
CMfl

I
3

>
■
O a
m

a)
4-'
10

'-. X3
o
c v
WJ-O
0) o
n a

(O
CO
o
a

O) a« ■•
rHr-(r-t

(CJ (Cj (TJ

KO
o o o
L. L, L,
0) D 0)

•»J
a

3
4J
0)
i.

l-t-

c
■n-H
on
x
•HT3
c>-i 3)

O
T3

'C
C-H
•HXi
X>
' TJ

UTS 0)
4J 0) X
Q.XH

•HCw
a««
« o
4-> bCC
CO C t£
.*•-) a>

o
T3

C -H
■H C >A-i
XJ-H C>^

X> *>
T3 -C CO
WO «»-»0) C
x v-^t. U
-t X L. «J 4J 3
CM-H4J Q.X4J
w^ cv-^ai 0)

sw-^^- L

>. >.a)
L >,>>t. co >.
4J 1, t-4J 3 U
C*>*3 C C^>
(U C C <D -1 C

0) a> «»v
*» 4-' a
X 4-'4J X C4-1

tt> X X OJ bOX
0) <U 0) 0)

*i ♦J n
O 0.0) 3 ^J
a) a> a) o a) a)
C4-- t.«»4-> b0
c cotw-a nn»
0^«»njT3'-l
O Id) 4J-H V
«*.'*> L^l >
•-(0) CO C RJ 0)
a bo.* *J>^

4)

[
O

5
c
Ü

w —s 0)

rtin
4JCO

o c
L,i3
0)

•D
-0)

CO X
WM
C<~

•H

lx
0)
x: t
4-> C
O bO

10)
C CO

is
o >

Ü
■o

a» a»
r-(.-t
XIX)
(0 CO
■-'4.'

LO
o o
1.1-
0) 0)

o o
■OTJ

c
•H
4->

3
X>

4J
CO
JO

i

3
C

■o
0)
X

4J
CO

0)
T3
3

--«
a
c

c
0) ■
1

Ü
X3

-115-

wmmmrmmmmmm^R mmMm^-.^mii^^mmmw » mi "—■ ——'■ ■ I IP»! 1 ». I -

^

c

c

0)

■P
o
c
(0

(0
c
E

(. «

O c
bC

n

0)
to

H

4)
n
•o

>
c

It

C I
o
c
c •
3 C

(0
4) O

m m
B S

60
c

L
0)

0I • - c
e
o c

»
o
c

I

«» .1 c
c
bO
0)

+
60
c

0)

XI
CO
4J

■
1-1

c
o
c

■p
c
3
o
o

t-ja oo O<H
- c U L. 3
v KD t. "i t, C

. ' ffle OK 0)
^v^ bO ^ »^ II

•-OJ 4-> C II 4^ <
04->'-<4ja)-H< cPC-u
C (drH u bOU L. a L. a
b0-O 3 O'V» • M O O O >.
ai-H C£i^< 0) bOO OX) t.
nr-i n)a)4->CR)«-i(a4J

I to H ^ n -H c c
« > ^H 0) ^ t. i-H-H r-l tt)

cxt-tr-i^-' 'i-i •!—i •••mw
ii ii 0) « aitoainjOJO.*-*

4JUIlL,4JU4Ja4->-OO.Q.
o a.« 4J n n n

bc*j a) cx3 iv a> v o
a; «««XIH 3<«x:^x:<«x: c

£ S
3 -H

(D E
C 0)

4J

c
3

0)
IM

■a
c
0)

-116-

 —

——— ^^^p^——- mm**mmi^mmmmmmimmmmmmmmmmmmm*mmm

a.

to

eo
|

0)

■
CO

0)
o
Ü
n

T3

3

eo •

1.

»H 4J
a a)
•H 60
*> L. « >H (0

•OT3 3 *J
0) C 1
x: 3 T3 0)
eo O bOrHx:
•H^ C 3*J
H •H O
£> a> » coo

co r:x3 -—.
t,.<-> T3 •HC
a> n.c •H n o co
•^ 0) o 9 CO t. CO
C 4J m n o
•w n m >> *J o
o me A c« CO o
cxx: •• o^»: ca

(0 (D-O
CO CO t, (U a» 'co
C COiH (TJ-H co n ca
L, «JrH «1 c cc
3 Ü-H U-H 0) o

n.co t, *> o > 0)+}
c> t. O CT3 X ffl 0)
L aw e a) c 0) (i>'-i

H 3T3 (0 t-nH
-O DW C-H 0) CO
ecu: »ceo
ecu *-- co M*^ o

0) c m c -HV
O «M C O)^' -H +J +J c
<-t-H4JB c«: o*--

« >>o a) ü «o •4J^H

4^i-l4-> eo 0)' T3 O'H
C -Ot, 0) t,

COT} CO a)4-> Q.>>
«0 CO) O'-* «!-»•»
CO • 3 > r-(^H bfl ^
CT30H*J«4JOO Q.

en bco o-Ht-i a)
t> O 0) C bC 4J
a>S4Jfl](.a)T-i>iC co

•H o t-x: u-H *
t^-a o c O-P L. me
•H(o-<-)t,o omo
*->OC3 Ci3004J a.
cco-i->tt>Haa)nJ «c
a>c a>c 3 o B4J to
T3-tJ (U U-iJ o c 0) o cd
"-• c IH c -< a)C

C04->OOX5*J (O-1-}
O00 4-' 4-^ ro C4-' X3 -
3 (Ti V- 4J 4) OC O a>
cr>-t OCOOBCO ^
•HO O C 0) Fx/ 34JXI
C ajU34->(Dccoa).H
3ccjcooa)ooa) wco

n C4JA-O c e L. oo
Hcoa- n o»ccoa)
CO C .P .* O 0) C 4->4-> o
b^ co jan-t-'^-H o

(D-H t- Ü t, 0) CO
aic x O*J *-> OJ aj oc
C4J v^-i co to >-r->ti&t-> •
*J 3 3 C0X)<H T3

•o aco E EC o (OWH
CO CC 0) O 3
V (0^> t- t. L >,C bC --
C -H V O (0 CO CUC
Ü -D ■(-> 3 .O -Q B -HCO
t, OJ o crB B oc o (-.
(0 k 0) 0) 3 3 WM-' ü L co
a» H 4-> t, c c c *-> to A '
n co at -H co co o.</}

OJ-O «*-><_' L u e -y
en c c c v a)
0 O O O 0) t-jO UCr-*
L. UJ4J-H 6 B 0) B O-iJi-t
nH 4-> VbOC 3JX (0
4-)(/)*J-H(l)(Uti0Ci0£-O
IO!iiCT3tO«~(0)0
* tOC CU 3

(DH O 0) 0) C U ••
c e UCC O O CO OUJ

A4J 4J *J c B aio
i co o) boo»-«-»:
1 0-iJC--^--~—0) eo.oc/3
I 4J-HH'-<\imto 3 OO

}

c

c

n.
co

a
4-'

o i
D.
4-''

3
0 •I

3 OJ oa^
C4->-^tH

^ O 3 3
4-> a.c

L -P
O V) 3 V
^ CO o w

■o O 0)
0) o-o
C CO t.T3
O O C
U >.» 3
(0 C O
0) WOtM
00 CO

CO OXM
4-> (0 t.H

occ
V 4-Ml]

x) n toco
O 01 10^

O CO
O^HTT
t O 0) a L.

— C-H
H o) n n

cm«
0 4J.C-0
3
O* i 0) 9)

■H-HCC
c *J*J
34J

a> o o
I C0 4->4->

a

i

T3 ■
C^
b0--
•H^
r-i*i
Tl-H

XJ

I 0) 0)
I +J 4J
I c c

&a

sO 0)
r>-irH L. t.

4->-H 0.0.
■H tO
J3 CO Q.Q.

01 C 0)
T3 O t0 4J
•H o m n
3 mci«:

m

■o c

b0^
•H^-O

m*j x

on

»C
C-H
•Hi3
«I
•H-O
•H 0)
3 X
O-H

c
O eo
•H C
n L.
C 3
0)4->
B O
•H t4
•o

T3
O >»
BC

d
'C

r-(0)

■ <-^,oe
so
mo)'-^ - •

X3-0+J 4J 0)
4J-HC O.OU)
■HOT ».,
o to -o. TH

0) bOC U 0)
■O Ü C COTJ >
■H o -H m n 0)
3 m t-c mrH

o
•o

4J
CO

-^
o

■o
3

i—I
o
c

-a I
c -^
co a
m v-,

5 ss T3 *> C
•H »-OO t.

•C 4J
4->B - 0)
too OC
^e 0)
w 4J C

M 0} 0)
-^ t-< ^C
v^T3 ^^*J

■o a
4-> m%-i t,'->

ben a> a
•*> *> c
•-t on ii u
Q) 0)^ *>
>*J^' am
0) io v B
rH-* 0J4->

^H eo^-i
II -H^-H

Q.C
bOC »
C co

■H m o
t-c-o

S1

t
II

u
1
0)

10

eo
oo
0)
o
o

•-m

•-•«
•o

•P-H

I

bc c\j
c
•H +
L,

L
- T3

t- C
■D
C

CO
(U •-«)
^ I. .■
CO'OH ^c E

0> 0)
X-PP

o m co co

X) fc*

O V
W*J

eo
•^ eoj«
w c

i- II •>
-H 3 0<«
I-« ♦JTJ'O-H
3 0)-H
C L. 3 C

0)
II .^-NCKIC

CW^*J

aE
•-0> 3 O
•O4J4J O
C CO 0) L,
0>^ t- O.

II II
L

T3T3 00
CCO

3
C (U CO
O 00
CrHlw
*J Q)-H

e
e
o
c

C
u •-

•-3C
T3*J Ü
C 0).P •-

t- mc
B o c

T3 tO
C4-'
0) n

0)

£

-117-

'*^mmm*^mm**''*mmimmmmw
■"""""• mmmmmmmrmm

f

i 3
c

1
fa I
C

O a

1
•

1 fa
u. «I c • •
c m 0) ^-^ y~*'

■#-(•H ^-.*J • *> a
> rH 4-) *> 3 **-» V
L n 3 a a *? ■ | H cw u-, oo
0) 0) *J 3 • ^
0) fa (0 3 O tf
fa

c ■H ^
■a 0) 0) 0) 3 3 rH p
c £■0 > U O.O. • » 1 n
(0 •<->o

o
ft •
bo*»

0) C-P
i3-H 3 ,„ 0) 3 60 e • 01 B-- O d fa

C o a kH 3 %• Ml N^ n «I a»
•H t, 0) 0)^H c a. fl • 0)
V v-.^ x> 0) 0) *—•* c 1 p u
V ■ E 0) •P*J-O

C «0 o
t- ■H • •> E ■ G

E <ÜX. I 0) i* * A ■~-o c Ji •
G *J - C fa 0)^0 ^^ ^^ a)e

■•*.
P

n o G
5)0) L.

fa •o j? »•— • — • •» — 00
IM x. c 4J Ml D 9 a> 0> ^-s^ ß o OiC
o t£ C O)^ 0) c o -rA Q... • *> X o rH P a. = c Cw

m a) o>£ a. n*j t. £> ^^ c ■H ii £1 n v o «)- •i
n ■ |3S E 't, •H <M » flj ^*> = 0)^3 OJ t.
c OT—^ 1 O 0) TJ t,*J *> Q.D. ,■> -^ n •» oos (0T3
o «1 o) o n *i 0) 4J a rH 4J 0)^-1 1 Jsd O ll •O ho
•^ O 0) n.i->.* 1 1 X o*~- ■H X ■U • fa' t,wc mm o> m
*J (0 > c^ fa •H v_^ 3 0) cn-p o T3 bOQ. P >^
o U t_ ffl o 1 9) 1 •*-, N £ Jd 00 E •OP 0)Xi oo II n
c tJ 0) 0) *J s~* >.t. *5 • p» •H E (0 3 CO • •-^s ") C
3 x n «•O 0) '—C 1 \rr~~ C-P *-> OQ ♦J •~iH 0) ^ o • fty r^ r-x -H
G v ai 0) a; u t^-H coo ■u c O .* n o I <»0)P O. 11 01 II «>

fa 0>-O<" .- o^ wC C V 0) E .* C V II c COP 00 0) P ■o
<u 0)«» U 0)4» ^^ am to 0) a bCO) fa P (0 «J* P o n o m

JC > 0) (t-i 0> 0) m C OJ *> CO C 0) 0) u a> 3 CKUJ* n c^ C 0'
4J C*J fad C I-' •^ n ♦J X c ■•♦, ■o n«-i .-■UP t- >o ÜC 60^ tit.

a) n 0)x: n •^ c ■o 1 x a> 3 3 ^-- • O O 0) ii JC ii a. • •» w 0) «x: •- ■ «.•«: 0) •!-).* A 1 -H 0) a> 1) rH 4->TJ O t. «> '.. n c mo n^ c
V V fa Ä T3 > «l M rH Ü >.C0 a o • t. >. 0) • t. • » ■a t. • < <« cn^-t ■o v n) C 3 L, .o c c* c •»OJrH C 0) 0) 3 fa 0) Q-O)-! 3

*^k •H •W-M ••»••Hi-H 0) -i x n ■H O *> n) •H M 0) OP"H bOPUP P > n PiHP
s^' > 0) rt 0) (0 X L. 0) •H ♦M» a *>. C<»-.J: c oo ai tu n o o> C (0 c i7 r 0)

o *J o *J 0) o •H*J X <w ► T3T3 *• 0)H*J (i>j«: o mx, o t- O 00 3 * O t.
o fa n B)4J *-■ OM-I o (0 ni »» «-
o a JK •• j«: n •• <M a> c 0) 0) i. o
k H J*U o o. ■o to k t. •o E • •

01 /sO ^ o c <u a> O (U .cc T3 Li V
9 1 < i ax M-P-O o n *J*J ffl 0) > • • m 1 CO 1 -COO 0) CO O^v ^^ s^ E • •

0) Jü 1 3 1 H3 n^ u« 0) V
*J ^ ^-1 rH iH ■ V
n ■ «J o Ü o 0) { x •^ ■o •o ■o n t.

1

-118-

J

w 1 1"J,Ü wmmmmmm ^mmmmm

M

q
0)

o
o
tn

0)
a

o

■
4-'
c
•H
o a

i

a

C

3

o
c
W)
0)
n

o
a

a

<u

n

o
c
0)

•-rg

^ iH
C-H

«> -HS

3

a a) u
c x-o

■H •H-n
<t-, It)

o ►
C--I

V 3
n c

o
•o

— >.

«w a)

0>-t*J
^-tiH 0]

• 3^

^< t
c-j

V tiTJ
3 (0 •»

CO) v
bOt. C*->
a» fc. n
to c 3^

tj*i |

• , ^> I.. O) ■
C
0)

-119-

F mmmmmmr— mmmnm**

•»H O H
4-- • *J 3
•^■o c
■o o T» *•
c c C
o t 1 3 c
O 3 ■ O C

*> L a 3
L a> G d

m (Q u 0) ■
Ci-t 03 •H Ct
0 3 0) •■H
•H O-H L. c
4J-H L 03 0)
Ü*J t- ■ r/ x:
C t- 0) 2 ■ p
3 «*J Q 3

WH Q.C 3 C <2
•H C x>

g^a 4J =
•4-> C o

^u« c 0) s
*>-Hr-(I

%
M) w

« r-4 1 -^ *-> II
■O 0) 3 0) b ^^
•H4J C 0) 03 P S_^^-v

rH CO 03 *-^ a a
«J!* tt> 0) 4-> ^ •-\ >.
> C 0) x: 3 ^i t.

X>*3 SI •P O to 3P
V 0) *J C — c C C
♦>.P c *> •- •H*> L* v_ 0)
mam *> •» nj'-- -- 3 3 •
X-MX: (0'- CO a ^> C 03

V** x: o *l c UP ft) t-p
r* O ■!-> c bO 03 3 ;. 3 03
3 n c bC 03 0) XI O P.*
di «-H 0) ■ 03 03 B — *—s ^s .-o)*-'
D m ra 0) 03 03—' 3 ^^ t, ^ t.
03 4J 03 >— c a f-- POO
3 a)X) O 0) 03 p^ • •» • ■k a c c 03

i2 o O 0) 4J 03 4J*J ^-^ 0^ *^x — boo» a.
>>4J 4-> 03 3 C 03 L k oix: 03

rH *> E 03 C ■Jl C p P «i OIP c
r-l O O 03%-l .*-H

&D
•H a O. c ^ 3

(IHJ C J^«* 04» A ^^ ^^ E ^w
E o o 03 O 03 X. 3 •«O,—
0) (. 0] 0) c x: c 0)*J •o 03 •- 03 •» PTJ 03 «1
CHO) £ B o to 4> c^-» C^ 03 03 P >-l< • •
Q>4-> O O 0) 03 1 O x t^-s t.-^ c n oif-i ^»
«)CT3 w. 0) 03 ■ -H 3X3 3X1 uurfSTa a

•H 0) 1 03 1 4-i • » PS PC ^•H |C 03 0)
03 O C 0) 0) 3 03 k • •• ■s—• c 03»- 030 ■O^P CP
a» Q.o t,*-> CP 1 0) ^-^ •H Cr Uc 03 A o> •■ woi

T3 -H <« Q ■^. « M t- >. P v-r ^0 C b0 -H*
S>-^ ao3w

Ml
•H (T)*-'' «»T3 «»•o — C L. r-t Ml ^^ *~* o > -^ OH OH t^-H ^0 P f-(p O^H OrH •H«- II 03 03 c
O 03-O C^-4 C-t •- o C 3 01 C (0 c n) 03»-' v) (Q C DO
I- c c UJffl bun) w Q. c 0) XI * b0> b0> oi <-.•. c i- 0)
Q.L. O 0) > 0) > •H 0) 0) 03 03 «•»•■ 03* 3 3 •- <n,

3 O 03 03 C ' XI p i~*. 0) 03—' «w C-4P Pr-I
O+J 1» 1" •H x a •o *^ S»' 3X3 01 «-■(>-• 03 (0 0)
c a>-o V 0) XI 1 ■o 0) 0) 3 c c ^ Ü-H-H t. > p • • dOU 0) 4-> CX 4J D. 03 o. p-t >.t- >.t- ■o 0> (0

o V 4-' (0 0) (0 0) •o 1 X a 0} o t. 3 I, 3 Ü 0) ■o
c •» 03,>,(0 T3 4-> TJ*J 03 ■H 03 c c PP PP o c -o •rH
60^ It, «I «4 03 •H 01 x u (M P 3 •H C 03 C 03 U £ r-l
0)w a)4-> 03 r-Ml rH^ •H*J 03 »• 03 L, 03 L. (0 OT. *J c n n) (» a O .*, M « >

\o (QUO) > •• > •• I rH s 4) O ■o -C H u o a P l-t ■o
4J 1. •HX:*» AO /SC3 C 0) 01 03 3 s c
(0 Q. ^H O i < 1 < bop 03 bO C • • 03

TJ nJ fflt« 1 w 1 CO 0) 01 ^ ^—• • • 03 M
•H >UJl-(1 3 1 =3 03.* • 01 03 r-l
r-4 rH iH •H 03 3 «P-l
n) • a a O E C > Ü > ^ •o X) ■o G •H 0)T3

-120-

■irf"—- MM

I

I
■
n
>.
m

0)
T3
O
Ü

Q.
£
Ü
C
rt
t. n

o
c

B
o

o
c

n

o
c
c

g
Ü
o

0) L, 01
£ O C

m

2
o
c
to
E
2

O 01 o
>.0).C c
J3 t.*J bO

•H 0)
T3T34J 0)
tt) O w
rH (0 OJ
rH rH *J
<0 C«-i 0>
O-H 0) Of)

t. <M
eo >, i«

•H «. O O.
*)*J

4J C .£
0) 01 0) >>u
n *J t, c
*-. C M O (0
«-> (0^4-> t.
O. ÜÄ,

h3 0> 0)
£ OJX: t. 0)
Ü >4JH*J
CO T3 «
mac T3

•H 0) Q.
XiUl £ 3

|m t-4J-w»
OJ-C (U o
«J 4-> CV-.
«) L. CH C
73 0)-HC-H
abcojj
3 fl O^H 0)

■•»> »*J
OrH 0) «0

<-. «)x:£^
c n4-> o
•H C<-l

|0) CO (T)r-I
o> c v u n
*J-M *J£> O
n^ «j

JK CT3 0) ••
O (XCUJ

A 3*JO
1 0) <
i x:*-)^.to
i *JM on

4J
9 a

4J 3
3 O

C

■>-- o
0)

0£>
0) O

■^)

n 0)
OJC 9 ■
x:«i-.
4-> o

1
o
0)
•o
0
0

Kt
o
x:
o a
to

O IU

I 0>
I "O
I o
I o

o-->
4-> 3
i) o.

ti' <'-» 9) +J
a)-H4J<M 3
X3-P 3<« O
B C Q.O>-
3 0)4-)
c-a 3

•H o
** >_-
C 0)
0> 3 L,
B cr0)'O to
bO-H^J 0) 3
V C C C^
to 3H W)nJ

0-H-«->
i i cxr-i n
I I a)
it.: I
I I O— I

COO I

t^ 0) t»-'
— CXJ «
^ be 4-)m

•H i -i-tco
I X3^
I C

•P-H
mji

u n
ojoop^-ix)
X-- 0.(u 0)

•H O.K
(M4-> o. M

■HCCV!
OX) O O
C C C 0)
bO-O (0 «TJ
(U-H U t- O
m 3X3X3 o

C-t
•H (0
X3

•OvO

T3
0)

5>

u^

c •-
x> u a
X) Ci.

X
•H n
^-. c

E
•tJ 3
X*J
0) <u

b

C XJrH
•H C (0
X3-H 4->

XJ ►0)'-^
-O L. COvO
a>-o*-><Mro
x a» a<M^—

■H X O.

«MXTC-H
0 ü OX3
C 0) c c
bfi-o n) ifl-o
01 O t. k-H
0) 0X3X3 3

Ü •o

c-
c
t- c

U3
0>

X3 0)
rt x

t*—
o
t. >.

0)+.>
c

-0)
o
c*->
bOX
0) V
n

■O 0)
■H m
-H 3
ra c
C'M
•H O
«»c

IM
0) 0)

•o I
n 0)
4J4J

,ln,
I.T3
O-H
t.- •
L. CO
0) >

O Ü
■o-a

s

i
•u

£

I
I

m

0)
•o
3

o
c

o
c
bO
0)

0)
10
3
t:

o
c
bO
0)
CO-'—*

0)
*Ji-H
CO'-*

■O 3
•H C

o
c
to
0)
CO
•o
•H

>
Q.«

X3
CD
4J

J
o
t.

0)

II

01 3
•-•O*-''

0) O O 0)
4.>T3 O t,

0.(0
0) ^ c

E s
c
o
c

S -I I— 4)

X3
(0
43

I
L
o c
E
9)

II c c
0) 3

• -■o-u
O O 0)
T3 O t.

II

•-D.
T) >^
•H L
•*i

0) c

n •
M 0) «

II n
•- M

■OT3
C-H<M
0) 3-^

Ok
>.
u
*J
c
0)

0)

■
Jl

11 ••
o a

C II
o

•-T0>
T3 O-J
c t- o
0)X3 Ü

All
I-

<M Q
^ >.

x: c
Ü 0)
c •

t. o
X) c

bO
'0)

o n
»1 bO
0) (Ü >. •-
(0 <o u o

.«(,_.— 4_' •-CM

C(M C C C
t. O.>»0» C-rH
3 It- • 3 I
4JJC*>*J** a)
01 U C (0 0)P
U C OJJ* t- n

E
!

5
i

I

-121-

J

PPP^WP^WW«
 ■ ■ ■ wm^m^mmmmm^mmunmi. i

 > get_branch_info

This file system routine is called by initiate_ to get

the attributes of a named entry in a directory. If the caller

has no access to the named object (if it exists) or to the parent

directory then the status code error_table_$noinfo is returned.

The reader should note that get_branch_info must read the access

control list of the directory containing the named entry if the

entry does not exist or if the process has no access to the

entry. To locate the access control list of the containing

directory, get_branch_info must call the kste_info module of the

address space manager, a recursive invocation of the address

space manager.

Usage: call ge^_branch_info (psegno, ename, type, uid, ep, link,
code):

psegno fixed bin (17) directory segment number (input)
ename char (32) aligned name of entry in directory (input)
type fixed bin (17) type of the object (output)

0 -- no entry
1 -- segment
2 -- directory
3 -- link

uid bit (36) aligned unique identifier of object (output)
ep pointer pointer to the entry of the object (output)
link char(») varying contents of the link (output)
code fixed bin (35) error code (output)

.

-122-

1 * —~ ■MUMM --

■—"*
11 "'■^^■""m J '«'i' ■■' '■ ' "•■«■ii* '■ »^

 > thread$in

This routine adds an element to a two way linked list

of elements. The first word of each element contains the

necessary forward and backward poincers.

Usage: call thread$in (where, what);

where pointer pointer to an element in the list after which
the new element is to be threaded,

what pointer pointer to the element to be threaded into
the list.

 > thread$out

This routine threads an element out of a two way linked

list built by thread$in.

Usage: call thread$out (what);

what pointer pointer to the element to be threaded out of
the list.

 > level$get

This routine returns the validation level of the

calling procedure. In all cases considered in this thesis the

validation level of a process is equal to the number of the ring

in which the process was executing when it called into ring zero.

Usage: ring = level$get ();

ring fixed bin (3) validation level of the process.

-123-

•>»>■• w*mmm wp»«^«^-«»" —-— -^.

 > disconnect

This routine physically removes a segment number from a

process' address space by zeroing the segment descriptor word for

that segment number in the process' virtual addresj translation

table.

Usage: call disconnect (segno);

segno fix-id bin (1?) segment number to be disconnected.

-124-

■- --■ - —

" HUM •»inwi ■ mf^nw^nn Wi»*-!^«.!.. >.■(>.. mmmimmmmmmm'

APPENDIX I

Unimplemented Address Space Manager Functions

In our discussion of the Multics address space manager

we omitted three mechanisms that it currently supports. These

mechanisms, which are non-essential to our design, were omitted

to simplify our presentation and avoid confusion. In this

appendix we will briefly describe these mechanisms and show how

they fit into our design.

I.1 Reserved Switch

The Multics initiation and termination primitive^ take

a reserved switch argument. In the case of initiation, this

switch specifies, if set, that the caller wishes to specify what

segment number to bind to the object when it is initiated.

Naturally, ring zero must check that the caller has in fact

reserved the segment number. When the ring zero initiation

primitive is called without the reserved switch set, then ring

zero chooses a segment number from a list it maintains of free

segment numbers. This segment number is bound to the object and

returned to the caller. In the case of termination, the reserved

switch specifies whether the freed segment number is to be

eligible for assignment when a free segment number is needed.

-125-

■"■■- •mm"m '" ' ""^

The reserved switch must clearly remain a protected

security kernel mechanism in our new address space manager. Were

this not the case, one protection domain could cause another

protection domain to malfunction by using a segment number that

the first protection domain had reserved.

1.2 Copy Switch

During the process of initiating a segment, an

attribute in its directory entry called a copy switch is

examined. If the segment has the copy attribute, then a copy of

the spfiwent is »«jde and this copy is made accessible to the

process instead of -,he original.

We -jan use the mechanism of reflecting information out

to ^n outer rin% by setting a status code to remove copy switch

processing fro« ring zero. This is possible since the current

initiation primitive takes an argument that allows a process to

bypass copy switch processing. Together with the fact that no

rir ; zero procedures or data bases have their copy switch set,

this insures that the protection mechanisms of ;.' e system do not

depend upon the segment copy on initiation facility. To take

advantage of this, our new initiate primitive will not process

the copy switch. Instead, it will always initiate the target

segment and return a status flag indicating whether or not the

segment's copy switch was set. The outer rings can then worry

-126-

(B-^_ um - ■ ■— - -

i^ww"1 >"m**'"r****mmm """■ ' '""

about creating a copy of the segment, terminating the original,

and returning the segment nuuber of the copy if the copy switch

was set. This allows the concept of a copy switch to move out of

ring zero.

1. 3 Transparency Switches

When a segment is initiated in the current Multics

system, the address space manager sets two switches, called the

transparent usage switch and the transparent modification switch,

in its KSTE. These switches determine whether thi." process'

usage and modification of the segment is to be detectable to

other processes in the system. These transparency switches have

no influence upon our design except that in an implementation of

our design (as in our test implementation) these switches would

be kept in the KSTE of a segment and the address space manager

would retain the two lines of code from the current address space

manager that sets these switches.

-127-

PPn«mmHmOT«W«v-<WfHMiR^^^Wn*i|i n i

Bibliography

B1 Bensoussan, A., Clingen, C.T., and Daley, R.C., "The
Multics Virtual Memory: Concepts and Design," CACM 1^.
5 (May 1972), pp. 308-318.

C1

C2

D1

D2

D3

F1

J1

II

LI

Ml

M2

M3

CorbatA, F. J., J.H. Saltzer, and C.T. Clingen,
"Multics -- The First Seven Years," AF1PS Conf. Proc.
|fl (1972 SJCC), AFIPS Press: Montvalc", N.J.

Corbat* F.J., and Vyssotsky, V.A., "Introduction and
Overview of the Multics System," AFIPS Conf. Proc. 27
(1965 FJCC), Spartan Books: Washington, D.C.

Dijkstra E.W., "Complexity controlled by hierarchical
ordering of function and variability," Software
Engineering (P. Naur and B. Randell, eds.), NATO
Scientific Affairs Division: Brussels, January 1969,
pp. 181-185.

Dijkstra E.W., "The structure of the "THE"
mt'ltlprograraming system," CACM JM, 5 (May 1968), op.
3;n-31*6.

Dahl, G.J., Dijkstra, E.W., and Hoare, C.A.R.,
Structured Programming. Academic Prens: New York, N.Y.,
1972.

Fabry, R.S., "Capability-Based Addressing," CACM 17. 7
(July 1971*), pp. 403-412.

Janson, P.A., "Removing the Dynamic Linker from the
Security Kernel of a Computing Utility," MIT Project
MAC Technical Report TR-132, 197^.

IBM, "IBM OS Liikage Editor", IBM Systems Reference
Library, GC 28-b538, January 1972.

Liskov, B. H., "A design methodology for reliable
software systems," AFIPS Conf. Proc. 41 (1972 FJCC),
AFIPS Press: Montvale, N.J.

Mills, H.D., "On the development of large reliable
programs," Proceeding3 of the IEEE Symposium on
Computer Software Reliability. 1973.

M.I.T. Project MAC, Introduction to Multics. MIT
Project MAC Technical Report TR-123, 1974.

Madnick, S.E., "Design Strategies for File Systems,"
MIT Project MAC Technical Report TR-78, 1970.

-128-

""• '' iwmipii I mill m^m^mm^m

Mi4 McCartl'y, J., Abrahams, P., et »1,, Lisp
Programmer's Manual. MIT Press; Cambridge, Mass.,
1965.

t

t

N1

01

Pi

HI

R2

SI

Naur, P. and B. Randell (Eds.), Software Engineering,
report by the NATO Science Committee, Garmisch,
Germany, 1968.

Organlck, E.I., The Multics System: An Examiration of
its Structure. MIT Press: Cambridge, Mass., 1972.

Parnas, D.L. , "A technique for software module
specification with examples," CACM 15. 5 (May 1972),
PP. 330-336.

Rotenberg, L.J. "Making Computers Keep Secrets," MIT
Project MAC Technical Report TR-115, 197^4.

Ritche, D.M. and Thompson K., "The UNIX Time-Sharing
System," CACM 17. 7 (July 1974), pp. 365-375.

Schroeder, M.D., "Cooperation of Mutually Suspicious
Subsystems in a Computer Utility," MIT Project MAC
Technical Report TR-10U, 1972.

S2

S3

Schroeder, M.D. and J.H. Saltzer, "A Hardware
Architecture for Implementing Protection Rinfs," CACM
li, 3 (March 1972), pp. 157-170.

Saltzer, J.H., "Protection and the Control of
Information Sharing in Multics," CACM IT. 7 (July
1974), pp. 388-UC2.

S4

Wl

W2

Saltzer, J.H., and M.D. Schroeder, "T'.ie Protection of
Information in Computer Systems," IEEE Proc^, 63. 9
(Sept. 1975), pp. 1278 - 1308.

Wirth, N., "Program Development by Stepwise
Refinement," CACM U. 4 (April 1970), pp. 221-227.

Wirth, N, Systematic programming introduction.
Prentice-Hall: Englewood Cliffs, New Jersey, 1973.

/

-129-

m -- -

